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CHAPTER 1

INTRODUCTION

1.1 Objective

An approximate expression for the far zone field scattered by the vertex of
a finite perfectly conducting wedge is obtained. The solution is cast in the form
of the UTD and is based on asymptotic equivalent currents found using modified
PTD concepts. The faces of the wedge must be flat (the normal to each individual
face is a constant everywhere on the face except at the edge) and the edges inust
be straight. For plane wave incidence from an arbitrary direction the first order

contribution from each vertex to the far zone scattered field is obtained.

1.2 Motivation

Since diffraction ie a local phenomena at high {requencies the results obtained
for a finite wedge may be applied to much more complex bodies made up of simple
shapes. The field scattered by a three-dimenaional shape constructed from flat
plates may be approximated to firet order as the sum of the contributions from
each individual corner. The first order solution should be reasonably accurate in
or near the specular regions as long as the object is convex. A convex body is
defined here as s ciosed surface made up of flat plates such that all of the exterior
wedge angles, taken between faces and exterior to the surface, are greater than 180

degrees. A simple cxamplb of an object that does not meet this requirement is a




corner reflector. The effect of shadowing of the faces by other parts of the object,
however, mus{ be taken into account. A brief description of how this is done is

given in Section 5.2.

1.3 Problem History ,

Theie are many approximate solutions to the scattered field from a finite :
perfectly conducting wedge. Some of these include the Physical Optics approx-
imation, the Method of Equivalent Currents [1], the previous Corner Diffraction
coeflicients [2], the Uniform Geometrical Theory of Diffraction (3],and the Physicel
Theory of Diffraction [4). The Physical Optics, Method of Equivalent Currents,
end Physical Theoi, of Diffraction will be described briefly in the next chap-
ter. The previous Corner Diffraction Coefficient was heuristically derived from the
squivalent cur: :nts of Ryan and Petere (1] and the Uniform Geometrical Theory
of Diffraction {3]. Although it gives gooa results in the backscatter region, it has
been found to give unsatisiactory results for certain bistatic cases. Specifically, 1t
bas probles ai the so-cailed {alse shadow boundaries which will be illustrated ir:
Chapter II.

1.4 Outline of Solution

It is assumcd that the incident field, and therefore the c:attered field, ie &
time harmonic field with time dependence wiven by e9*t, which mll be suppressed
throughout this report. The solution will be *-ased on the PTD and cast into the
form of the imeihod of equivalent curr~nts and then into diffraction coefficienta.
This wil! be done ax follows. The actual currents on each face of the plate will be .
approximated by the PTD currents. The rcsulting double integral over :he surface

is then reduced %o a line integral along the edge by doing the integration over




one cooidinate in closed form. This is done by taking the asymptotic endpoint
contribution in one case and by the application of some algebraic manipulation
followed by the use of Stoke’s theorem in the other case. The remaining integral
along the edge is written in the form of a radiation integral so that the equivalent
currents may be identified. Then this integral is evaluated using the method of

stationary phase to obtain the contribution from each corner.

1.5 Notation, Abbreviations and Symbols

This section contains some information on the notation, abbreviations, and
symbols that are used in this report. Normally the term equivalent currents refers
to the surface currents used in the equivalence theorem. In this report, however, the
terms equivalent edge currents and equivalent currents will be used interchangeably

to refer to equivalent edge currents.

1.5.1 Symbols

These are some of the symbols used. Most of them are also defined as they

first appear in the text.

f = diffracted ray elevation angle in edge fixed coordinates

B = diffracted ray elevation unit vector in edge fixed coordinates
B' = incident ray elevation angle in edge fixed coordinates

ﬁ' = incident ray elevation unit vector in edge fixed coordinates
A = free space wavelength of the time harmonic fields

¢ = diffracted ray azimuth angle in edge fixed coordinates

or in pattern coordinates (depending on context)

o
]

diffracted ray azimuth unit vector in edge fixed




E-“, ﬁi
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il
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coordinates or in pattern coordinates (depending on context)
incident ray azimuth angle in edge fixed coordinates

or in pattern coordinates (depending on context)
incident ray azimuth unit vector in edge fixed
coordinates or in pattern coordinates (depending on context)
Radar Cross Section

diffracted ray elevation angle in pattern coordinates
diffracted ray elevation unit vector in pattern coordinates
incident ray elevation angle in pattern coordinates
incident ray elevation vector in pattern coordinates
angular frequency

bi-normal unit vector

soft, hard diffraction coeflicients

soft, hard corner diffraction coefficients

cross polarized corner diffraction coeflicient

(hard incidence, soft diffracted)

corner diffracted field

diffracted field

incident field

components of the incident field tangent to the edge
transition function

V-1

electric equivalent currents




k = 2x/)
M = !ﬁagnetic equivalent current
n = wedge angle parameter
i = unit vector normal to the face of the wedge

ey

= unit vector tangent to the edge

incident ray direction

t
I

8 = diffracted ray direction
Yy = admittance of free space

Zy = impedance of free space

Components of the equivalent currents will be designated by placing appropriate

superscripts on the symbols I, I, and M.

1.6.2 Abbreviations

GO = Geometrical Optics

GTD = Geometrical Theory of Diffraction
MM = Moment Method

PEC = Perfect Electrical Conductor

PO = Physical Optics

PTD = Physical Theory of Diffraction

RCS Radar Cross Section

i

UTD

i

Uniform Geometrical Theory of Diffraction




Figure 1: Edge Fixed Coordinates.

1.5.3 Edge Fixed Coordinate System

An edge fixed coordinate system will be used throughout the discussion of the
equivalent currents and the corner diffraction coefficient. As shown in Figure 1,
the origin of the right hand system (b,n,t) is placed on the edge. Th‘e point on
the edge where the origin is placed will depend on the problem being considered
and will be sperified. The #i direction is chosen so #i is normal to the face under
consideration and directed outward from the interior of the body. In the case of a
flat plate the outward normal is ambiguous, and the positive #i direction may be

arbitrarily chosen in either of the two directions. The { axis is chosen tangent to




the edge. The positive { direction is chosen such that the positive b axis (b = # x f)
will lie on the wedge face under consideration. Since only one face is considered at
a time this results in a convenient and unambiguous coordinate system for all of
the problems considered here.

The incident ray is described by the spherical coordinate system (s',3',¢')
based on an axis in the —{ direction. The incident field may, therefore, be described
as a sum of its components in the B’ and ¢' directions since it is always assumed to
be a plane wave in this report. Similarly the diffracted rays are described by the
spherical coordinate system (s,83,¢) based on an axis in the positive { direction.
The radial component of the diffracted field will be zero in the far zone, resulting
in a field which may be expressed in terms of its 3 and ¢ components. The angles

and unit vectors are shown in Figure 1.

1.5.4 Radar Cross Section

The numerical results are expressed in terms of Radar Cross Section through-
out this report. Radar Cross Section is the mathematical area that intercepts the
power from the incident wave on the target, which if scattered in an isotropic man-
ner would produce the same scattered power density as produced by the actual
target assuming that both the transmitter and the receiver are in the far zone of
the target; i.e. ry,rg > 2D?/ 4\,' where D is the maximum dimension of the target
and ry,rg are defined in Figure 2. Letting S'= power density incident on the
target from the transmitter (constant over the target for plane wave incidence);
5% = power density scattered from the target toward the receiver (constant, see

S%) results in .
US‘(Ot 1 ¢¢)

plim [—4;;5-—"} = §°(0r, ¢r). (1.1)




Transmitter

Receiver
Figure 2: Definition of Distances ry and r9.

Solving for ¢ gives

o= hm 4m‘§ S‘(BL,:S) (1.2)

Since for most problems of practical importance and all of the problems done here

the medium is free space the power densities are simply related to the fields by

IEI2

§= = |H? 2 (1.3)

where |E| and |H| are the rms values of the electric and magnetic fields, respec-
tively, at the point of interest, and Zj is the impedance of free space. Therefore
the RCS reduces to

l Hm|2
|2

sc|2
= _lim 41rr2-'-l-?—' = lim d4mr}
rq—+00 l E‘I rq—00

(1.4)

where |E*¢| and |H?*¢| are the magnitude of the scattered electric and magnetic
fields, respectively, at the receiver and lE‘l and ‘H i‘ sse the magnitude of the
incident electric and magnetic fields at the target.

8




1.6 Pattern Coordinate System

The usual spherical coordinate system is used for all of the results. The source
is located in the far zone direction specified by the spherical angles 8’ and ¢' (or
sometimes by 6% and ¢i). Similarly the observation point is located in the far zone
direction specified by the spherical angles § and ¢. In the special case of backscatter
both the source and receiver locations will be indicated by 8 and ¢. Notice that ¢
and ¢' are also used in defining the observation and source directions, respectively,
in edge fixed coordinates, but it should be obvious from the context which angle is
being identified. The RCS is given in terms of the polarization of the transmitted

and received fields. The following definitions will be used throughout this report

EJC 2
ogg = 4mr 2 | (1.5)
)
9
EOC 2
049 = 4nrd! - (1.6)
Ey

E&¢
d¢¢ = 41!'1‘% ¢ ] (17)

og¢ = 41!'1’% (1.8)

where ‘E;,' and |E§,i are the magnitude of the é’ and ¢’ components, respectively,
of the incident field at the target. Similarly I ;°| and lEgcl are the ¢ and §
components of the scattered field at the receiver. The first subscript on o refers
to the polarization of the received field; whereas, the second one refers to the
polarization of the incident field, both in pattern coordinates. For the general case

of bistatic scattering, the notation will remain the same even though 6 and 6' (and

9




¢ and ¢') are in different directions. All results shown are given in terms of either
dB relative to & square meter or dB relative to a square wavelength depending on

the specific problem. They are simply related to the above expressions by

o(in dB) = 10logjg 0 (1.9)
or
: |E*)
o{in dB) = 20logyp | rooT | + 101ogyg(47) (1.10)
|E“

for each of the combinations of transmitting and receiving polarizations.
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CHAPTER II

THEORETICAL BACKGROUND

2.1 Introduction

The high frequency methods used to derive the new far zone corner diffrac-
tion coefficients are described briefly here. Geometrical Optics (GO) and Physical
Optics (PO) are discussed first since both of these are important in the implemen-
tation of the new solution. The basic concepts of the Physical Theory of Diffraction
(PTD) are then given. Following this is a description of the differences between
the Method of Equivalent Currents as proposed by Ryan and Peters (1] and the
method uscd to derive the new equivalent currents. A corner diffraction coefficient
based on the old equivalent currents is also given. The results from the method of

stationary phase are then described briefly.

2.2 Geometrical Optics

A brief summary of Geometrical Optics (GO) is given here. Further informa-
tion on the subject may be found in references {5) - [8], and the basic principles
are covered in many antennas textbooks, such as [8]. The propagation of elec-
tromagnetic energy through isotropic, icssless media can be described using GO.
It hss long been known that at high frequencies electromagnetic energy can be
viewed as traveling along well defined paths known as rays. The ray paths, in

any continuous medium, may be determined using Fermat's principle which states

11




Figure 3: Astigmatic ray tube.

the energy will flow along the path of shortest electrical length betweer any two
points in the medium. The shortest electrical path is the path which results in the
shortest propagation time between the two points. Furthermore, these rays are
orthogonal to surfaces of constant phase. If the medis is also homogeneous, which
is true in this case, the ray paths are straight lines. Assuming the field is known at
some constant phase reference surface, it can be calculated at any point away from
caustica using coneervation of energy. Referring to Figure 3, if the field is known
at some constant phase surface dAg along with the principle radii of curvature, py
and p3, of the surface dAg then the field st d4 may be calculated using the conser-
vation of energy and the sbove assumption that the electromagnetic eaergy travels
in straight lines. Since the energ; flux at both of the surfaces is proportional to

the square of the field, it follows from the conservation of energy that
|E@)f d4o = |E()[ ¢4 . (21)

From geometric considerations it can be shown that

dA _ l(m +8)(p2 +0) (22)
dAg "M
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Combining these two equations gives

EOREON

where it is assumed that the positive £ direction is in the direction of propagation

p1P2
P10+ D (23)

and the principle radii of curvature p; and p3 may be both positive (concave wave
front), both negative (convex wave front), or opposite in sign (saddle wave front).
The complete expression for the fieid, one that includes the phase as well as the
magnitude of the field, musi be obtained from the asymptotic zolution of Maxwell’s
equations and is given v

PLP2
“() - E(O)\’ I(Pl + £)(p2 + £}

¢-ilke-mF) (2.4)

where m is the number of caustics the ray passes through going from O to £. For
example, m=0 for points to the right of the caustic labeled 3-4 as shown in Figure 3,
m=1 for poims between 1-2 and 3-4, and m=2 for points to the left of 1-2. It has
been assumed that the wave is traveling from left to right so £ is positive to the
right of O and negative to the left of O. GO obvivusly fails at the caustics where
it predicts that the field becomes infinite.

Only two special cases are of interest here. Letting py, p2 — oo and replacing
¢ with s gives: E(s) = E(0)e~## which is the well known result for a plene wave
propagating in the positive s direction where E(0) is the field at any convenient
constant phase plane, and s is the distance from the reference plane to the point
of interest. The spherical wave is the second case of interest here. In this case,
p1 = p2 = p giving

E(s) = E(0) !;-5-_3 ¢~ i(ke-m§) (2.5)

letting the reference point approach the caustic and assuming pﬁ(()) — A, 8s
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Figure 4: Projection of rays on to b-n plane.

p — 0 gives
— - G—jk’
E(B) = Ag

- (2.6)

which is the familiar spherical wave rasult. Notice that m=0 in both cases since

no caustics are crossed.

2.3 Geometrical Theory of Diffraction

I Fermat's principle is extended to include refraction, reflection, and difirac-
tion points then GO may be extended to media with discontinuities in electrical
characteristics. This means that not only is the field from the direct or line-of-
sight path included, but also paths which include points on the surface where the
media is discontinuous. In this case the discontinuity is & wedge with perfectly
conducting flat faces. The edge-fixed coordinate system described earlier is used.
The projection of the rays onto the b-n plane is shown in Figure 4. For a fixed
source, the observation point may be in one of three regions around the wedge. In
vegion 1 (0 < ¢ < v — ¢'), all three rays contribute to the total field. In region
ll(x—-¢ <¢<x+¢) only the direct and diffracted fields contribute to the

14




OBSERVATION
POINT

oF
DIFFRACTED RAYS

—d Y

0
SOURCE POINTY

Figure 5: Keller’s cone of diffracted rays.

total field since no point on the wedge satisfies the law of reflection. In region III
(r* + ¢ < ¢ < nx), only the diffracted field contributes to the total field. No-
tice that, in general, the reflected field is discontinuous at the reflection shadow
boundary (¢ + ¢' = x), and the direct fi*d ia discontinuous at the incident shadow
boundary (¢ — ¢' = x). Keller [10) derived an expression for the diffracted field
ir terms of the field incident on the edge and showed that the major contribution
comes from a single point (the diffraction point). The condition § = B is met at
the diffraction point. The cone of rays that satisfy this condition for a given point
along - .e edge is known as the Kelle. cone (see Figure 5). Keller's results for the

diffracted field were only for observation poiuts away from the shadow boundaries.
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Kouyoumjian and Pathak [3] later formulated the Uniform Geometrical Theory of
Diffraction (UTD) which extended the solution to all regions of space. The results,
in terms of the edge fixed coordinates shown earlier in Figure 1, for a plane wave
incident from the direction (8',¢') and a far field observation direction at (3,¢) are

given by

s —jks
Eg _ Ds 0 Epl(Qe) e’ (2.7)

Ej 0 Du||Ejy@)] °

where

bus = ey [ () + oo ()

T [cot (-’-’-—'—%ﬂl) + cot (’—'-i%fﬂ)]} .

Q. is the point on the wedge which satisfies the condition § = g, EE;,(Q,) is
the component of the incident field in the B direction at Q. and E;,(Qe) is the
component of the incident field in the ¢' direction at Q. (see Figure 5). The
diffracted field is described in terms of transverse components, B and §, at a far
gone distance s. The first and third cotangent térms have been associated with
the O-face incident and reflection boundaries, respectively. Similarly the second
and fourth cotangent terms are associated with the N-face incident and reflection

boundaries.

2.4 Physical Optics

Physical Optics is a widely used technique for finding the field scattered by a
perfectly conducting body of arbitrary shape. The physical optics approximation

to the surface current is given in (11] by:

- 2 x H'; in lit regions
Jpo = ' (2.8)
0 ; in shadow regions
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Figure 6: PO Currents on an arbitrary scatterer.

where the illuminated and shadowed regions are determined using ray optics, and
H' is the incident magnetic field on the surface of the perfectly conducting body
and is approximated by the GO incident field in this case. Since only far zone
sources are considered here the incident field will always be locally plane and the
raye will be parallel. A simple 2.D example illustrating the lit and shadowed
regions is given in Figure 6.

The scattered field is found using the far zone radiation integral which is
defined by

ke .
B(s) = JkZoe : /' J(#)eiks T st (29)
Plugging in the PO a.pproximation to the surface current gives:
E(s) = 2 "Z° e j % x FY(7)eki 4! (2.10)
17




where §' is the illuminated region on the scattering surface and s,3, and v are

defined in Figuré 6.

2.5 Physical Theory of Diffraction

The Physical Theory of Diffraction was first widely used for scattering prob-
lems by Ufimtsev (4]. Additional currents are added to the Physical Optics currents
so that the solution is valid for larger regions of space and for smaller scatter-
ers than is possible with either GO or PO. Letting the total surface current be
J=Jj po+ f:f where j} is the correction to the PO current which when added to
the PO current would approximate the actual current on the scatterer. Since the
PO current is derived from the assumption that the surface may be locally approx-
imated as an infinite plane tangent to the surface, it is expected that J; 7 could be
described as the current due to the deviation of the surface from an infinite plane.
The sharp edge or wedge is the only deviation from a planar surface considered
here. Ufimtsev speculated that this correction to the PO current would only be
important near the edges of the scatterer in this case.

Assuming plane wave incidence, the magnitude of the PO component of the
current is constant on the illuminated region of a planar scatterer so Ufimtsev
named this the uniform component of the current. The magnitude of the cor-
rection current is obviously not constant on the surface and is thus called the
nonuniform component of the current. In the case of a wedge, Ufimtsev refers to
the field radiated by the nonuniform part of the current as an elementary edge
wave or simply an edge wave since it is produced by the nonuniform part of the
current which is concentrated along the edge and rapidly decreases away from the
edge. In his latest paper [12], however, it seems as though he refers to the scattered

field as the total edge wave and the field due to the correction current, ff, on an
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infinitesimal sirip of the wedge as the elementary edge wave. In this case the only
contribution to the nonuniform current J’ f is due to the edge discontinuities. If
the edges are long in terms of the wavelength and have radii of curvature which
are also long in terms of the wavelength the total current may be upproximated
by the current on an infinite wedge tangent to the scatterer at the point of inter-
est. The nonuniform component of the current may then be found by subtracting
the GO current from this approximation to the total current. Ufimtsev calls the
approximation to the nonuniform current given by the infinite wedge the fringe
current, and the field produced by this current the fringing field. Ufimtsev never
actually found the fringe current, instead he found the fringing field by indirect
considerations. In recent years both Michaeli [13,14] and Ufimtsev [12,15] have de-
rived expressions for the fringing field involving expressions for the fringe current
on the wedge. Michaeli’s expressions for the fringe current will be used in the later

development of the corner diffraction coefficient.

2.8 Method of Equivalent Currents

The method of equivalent currents was originally used by Millar in [16] - [18].
Ryan and Peters [1] used the method of equivalent currents to find the diffracted
field in the region of caustics of the UTD diffracted field. Ryan and Peters equiva-
lent currents have been used to find the original corner diffraction solution shown
in the next section. Ryan and Peters equivalent currents are discussed here since
they may be used to illustrate some important points about the use of equiva-
lent currents in general. A brief description of the methods of finding the new
equivalent currenis used in the corner diffraction coefficient will be given.

Ryan and Peters compared the asymptotic approximation to the far zone

diffracted fields from an infinite wedge illuminated by a plane wave to the expres-
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sions for the far zone fields radiated by infinite magnetic and electric line sources.
Equating the two fields, they obtained expressions for the equivalent edge currents
which depend on the direction of incidence and the direction of observation. The
field scattered by an arbitrary three-dimensional body made up of smoothly curved
faces terminated in sharp edges is found by numerically evaluating the usual radi-
ation integral along the edges of the scatterer using the equivalent currents. These
equivalent edge currents are obviously not physical currents since they are func-
tions of the observation point. They are a means of mathematically simplifying
the problem of finding the diffracted field.

It was shown later by Northrop [19] and Sikta, et al. [2] that if the surfaces
were represented by very thin strips oriented in the proper direction, the solution
was more accurate for three-dimensional problems. The strips are oriented in a
direction such that the angle between the vector tangent to the edge (f) and the
strip is given by .

tanf, = —tan@ cosd' 0< 6, <n (2.11)

as shown in Figure 7. This orients the strips so that the incident ray is normal to
the infinitesimal edge on each strip.

Later, it was found by Marhefka [20] that for the case of bistatic scatter-
ing changing the orientation of the strips, in general improved the results. The
modification used is simply to replace €, given in (2] by:

L (I-d)xa | (F-a)xh .
- |(f—£)xﬁ|{|(f—5)xﬁ| ”} (212)

where i is the diffraction direction, [ is the incident ray direction, # is the normal
to the face, and ép is the edge vector. This expression reduces to the expression for

(Y [

é. given in (2] for the special case of backscatter. This replacement is equivalent
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Figure 7: Strips used in Ryan and Peters Equivalent Currents by Sikta [2].
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to placing the strips such that:

cos B — cos 3’
gin 3 cos ¢ + sin A’ cos ¢

cot 8y = 0<6, <~ (2.13)

where 0, is measured as illustrated in Figure 7. It is interesting to note that this
is the strip orientation associated with the PO surface integral (see Section 4.7).

As a result of the two-dimensional nature of the solution and the orientation of
the strips, the scatiered field predicted by the equivalent currents is singular at the
so-called false shadow boundaries. The false shadow boundaries are the regions
of space where the two-dimensional problem goes through a shadow boundary
(¢ £ ¢' = w), but the three-dimensional problem does not (8 # #'). The major
reason for this problem is the two-dimensional nature of the solution. A simple
example is given next illustrating this property.

Tue bistatic scattering from a flat plate two wavelengths on a side is calculated
using the equivalent currents given in (2] with the replacement of é, as described
above. A fixed source is placed at 6 = 45° and ¢* = 0° as shown in Figure 8.
The pattern is taken in the ¢ = 60° plane and the resulis are illusirated for the
entire scatiering matrix. The results using the previous equivalent currents are
compared with Method of Moments results in Figures 9 to 12 for the four different
combinations of incident field and diffracted field polarizations. In all four cases,
the previous equivalent current solution is singular at the false shadow boundaries
(0 =~ 240° and 6 ~ 300° in this case). The spikes are due to singularities in
the contributions from both the front and back edges which have false shadow
boundaries at both 8 =~ 240° and 8 =~ 300°.

The idea of using infinitesimal strips to represent a flat face is used again in
deriving the new equivalent currents; however, the strips are oriented in a different

direction in finding the new equivalent currenis. A different approach is used to
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plane).
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Figure 9: Co-polarized RCS in the ¢ = 60° plane of a 2A square plate with a ¢
polarized fixed source at §* = 45°, ¢* = 0°.

3 —
-—  Ryan/Peters Equiv. Currents l
-- Moment Method

1

O (deg.)

Figure 10: Co-polarized RCS in the ¢ = 60° plane of a 2A square plate with & S
polarized fixed source at §* = 45°, ¢' = 0°.
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Figure 11: Cross-polarized RCS in the ¢ = 60° plane of a 2) square plate with a
6* polarized fixed source at 6* = 45°, ¢* = Q°.
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Figure 12: Cross-polarized RCS in the ¢ = 60° plane of a 2) square plate with a
¢* polariged fixed source at 8 = 45°, ¢* = 0°.




find the new equivalent edge currents, and different expressions are obtained. The
scattered field is found from the new equivalent edge currents in the same way as it
is found from Ryan and Peters previous expressions. The new equivalent currents,
however, predict smooth fields at the false shadow boundaries. This is illustrated in

Section 5.3.7 where the above example is repeated for the new equivalent currents.

2.7 Previous Corner Diffraction Coefficient

A diffraction coefficient for & corn=r formed by the intersection of two straight
edges was derived by Burnside and Pathak {2]. It is based on the asymptotic
evaluation of the radiation integral containing the equivalent currents of Ryan
and Peters [1] The result was then empirically modified so that the diffraction
coefficient would not change sign abruptly as it passes through the false shadow
boundaries. It was derived for spherical wave incidence and remains valid for cases
when the diffraction point is near the corner since the integral was evaluated for
a saddle point near an end point; however, only the far zone result is shown here.
The corner diffracted field due to one corner and one edge in the case of plane

wave incidence and a far zone receiver is given by

B | o | B (@)D (8080 ) | ot (214)

E§ | | By (Q) D5 (6,6, 80rfoc) | °

i | | Co(Qe) | _vEiBounpa et (215)

DF| | OnlQu) | (conflc +coslia) Vark |
. Jhan

Zictans. (DS - ) + Di(s - 3]
¥ |Di(é+¢)+Di(s+¢")]}
D5n(%) = Donl¥) 'F [m

2xa (Boc + Bo)
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a(ﬂ) = 2cos® (-‘%) , aT (1) = 2cos? (?ﬂ%ﬁ_—_}é)

/

where N¥ is the integer which most nearly satisfies 2n*N¥ — 4 = T, and

Dant#) = oot [T

1
i

2n
_ 7 + fo — Boc
fa = ———
. e [0 _ir2
F(z) = 2j|va|e /! e (2.16)

where the angles are shown in Figure 13. The sign on the diffraction coefficient
may be plus or minus depending on which endpoint of the edge is being considered.
Choosing the correct sign is discussed in Section 3.5.

The hearistic factor added to the corner diffraction coefficients changes the
behavio: of the solution at the false shadow boundaries, as illusirated in the next
" example. The bistatic scattering ex:ample from Section 2.6 (2) square plate, source
fixed at 6 = 45° and ¢’ = 0°, and ¢ = 60° pattern) is repeated here using the
corner difiraction coeflicients. The results for the four different combinations of
incident and diffracted polarizations are shown in Figures 14 to 17. As the figures
show, the previous corner diffraction solution is discontinuous at the false shadow

boundaiies (6 = 240° and 6 = 300°) of the front and back edges.

2.8 Stationary Phase Method

The stationary phase method is u widely used method for asympiotically
evaluating a certain class of integrals described below, The results are staied.
Further informatior on the siationary phase methiod and asymptotic series is giver
in [21] for the following

b o
I(x) = / F(z)e?®¥(5)dy (2.17)
a

a7




Figure 13: Definition of angles for the Corner Diffraction Coefficients.
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Figure 14: Co-polarized RCS in the ¢ = 60° plane of a 2) square plate with a ik
polarized fixed source at 8 = 45°, ¢* = 0°.
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Figure 15: Co-polarized RCS in the ¢ = 60° plane of a 2) square plate with a o
polarized fixed source at §* = 45°, ¢' = 0°.
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Figure 16: Cross-polarized RCS in the ¢ = 60° plane of a 2) square plate with a
6* polarized fixed source at 6* = 45°, ¢* = 0°.
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Figure 17: Cross-polarized RCS in the ¢ = 60° plane of a 2A square plate with a
¢* polarized fixed source at §* = 45°, ¢*' = 0°.
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where x is a real variable; & is real, positive and large; ¢(z) is a real, continuous
function with continuous derivatives for a < ¢ < b; ¢'(zs) = 0,for @ < z, < b and
T, is not close to a or b. Note that F(x) is a complex function which is slowly

varying and well-behaved on [a,b] then I(x) is asymptotically approximated by

I(k) ~ F(z,) |¢"(za)l i [d(me)+ Jogn(¢' (2a))]
1F(b) 1F(a) jicd(a)
+ (b) Jlxe(d)-%] _ P )eJ[ $(a)-3%] +o( %) . (2.18)

The first term is the contribution from the stationary point while the second and
third terms are the contributions from the end points b and a, respectively. If
there is no stationary point in the interval [a,b] and there are not any stationary
points z; near the end points a and b, the integral is asymptotically equal to the

sum of the end point such that

- Lot 12t ocl)

This result will be used to reduce the equivalent edge currents to corner diffraction
coefficients. It is also easily seen that the terms of order 1/x in the stationary
phase approximation give the exact integral in the special case where F(z) is a
constant, such that F'(a) = F(b) == F. Then, ¢(z) = cz such that ¢'(z) = ¢
which is a constant. This obviously indicates that no stationary points are in the
interval or near the end points. Plugging into the above equation and retaining

only terms of order 1/x, one obtains that

I(x) ~ -—al"bc-il alm-il (2.20)
I(x) ~ 212,%‘ - %chefm (2.21)
3




which is the same as the result one obtains by integrating the following expression

I(k) = fa ® peirends . (2.22)
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CHAPTER II1

THEORY

3.1 Introduction

This chapter outlines the derivation of the new equivaient cusrents for finding
the far zone scattered fields from a perfectly conduciing wedge illuminated by
a plane wave. This is a combination of the work done by Michaeli (13,14] and
Buyukdura [22]. The contribution from a single face of the wedge is writien in the
form of an equivalent edge current. The equivaleni currents are then reduced to
corner diffraction coefficients. Then the corner diffraction coefficients are written

in a form that is consistent with previous forms for diffraction coefficients.

3.2 Physical Optics Surface Integral

Gordon [23] showed that the far zone radiation integral over the PO currents
for a plane wave incident on a flat plaie may be converted from a surface integral to
a line integral around the edge of the scatterer. Later Buyukdura [22] arrived at the
same result using & different metiioa. The steps he used to find the PO equivalent
edge currents are repeated he: :. The PO equivalent edge current is found for a
plate with the O-fe: & illuminated. The results may be easily used for a general
wedge since the FU contribution from each illuminated face may be calculated
separately and sammed to give the total PO contribt‘xtion. I a face of the wedge

is not illuminated then that face makes no contribution to the scattered field and
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does not interact with the other face of the wedge in the PO approximation. Using
the edge fixed coordinates given in Figure 1 and choosing the normal direction so
that ¢' < = it is assumed that the contribution from the O-face to the far zone

scattered field may be writien as

o kZge TR o ikat) jklt)
B = G TR ixix /CK(t)e e dt (3.1)

where c is the curve along the edge or edges of the scatterer and K(t) is an unknown
function of the source and observation directions which is to be found. The field
produced by electric and magnetic line currents placed along the edge are given by
—ikR
R

L [208 x5 x 81 +8xi M) eibeseibezay (3.2)
4r c

where

kz:-ké'é, kz=k5°£'. (3‘3)

Equating this result with Equation (3.1) one finds that

I=K; ~ KpcotBcos¢ (3.4)
and
sin ¢
M= _K”Z(’Zi_ﬁ (3.5)
where
K(t) = {K, + bK,, . (3.6)

Placing the PO currents in the radiation integral over the surface of the plate gives

E*. _ JkZo e"’j"R
T 4x

sxix [ [ @ x Hi)eihe—te)ogd(bs-b)egeg,  (37)
8

where

J9O(z,2) = 2 x H'(z,0,2) (3.8)
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H¥(2,0,2) = ﬁée"’jh”‘ze"jkiz (3.9)
ki=ki -2, k. =ki : (3.10)

and H* is the GO incident field. Using the following vector identity

eI (ke—ki)z i(ke—k})2

pilke~kS)e (ks —bi)z _ §-V x {[(k, — k)& ~ (kg — ki)i]

jk2he
(3.11)
with
N X2Y _ LEy2
h2 = (kz kz) ;;(kz kz) (3.12)
gives
& Zn e—TkR .
B = %ﬁf—ﬁ——ix;ixf_/s(ZﬁxHﬁ)g-Vx
- 1 eflke—kE)e pi(ke—ki)z
(ks — )2 — (ko — Ki)2] Y dzdz . (3.13)

Then applying Stokes’ theorem, one obtains that

- 4 ~jkR oo | (b — b \ei(kz—kS )z (kz—kE)z
E’-_-:——-—-J:fo——_-eR xixL(%xHé){ L k,)ej;zh; bl }dz (3.14)

where the line integral is around the edge of the plate. Comparing this integral

- 13

with the integral in Equation (3.1) results in the following:

_ 2 _;sinfcos¢ +sinf cos ¢
K = B s (3.15)
2 .sinfcos ¢ + sin ' cos ¢’
Ky =~ . (3.16)
where
B = bB} + ol + iH} (3.17)
using
B= LB (3.18)
Zy
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gives
sm ¢
Zo sin 3’

Using Equations (3.15), (3.16), and (3.19) in Equations (3.4) and (3.5) gives

' _.
b=~

+ Hj cot @ cos ¢’ . (3.19)

2ZgHisin¢ U(r - ¢')sin B cos ¢ + sin 3’ cos ¢’

M = : .
jk “teinf [(coaﬂ —co8 3')2 4 (sin B cos ¢ + sin B cos ¢' )2]

(3.20)

and

I = U(r-¢)
2Yy ,sm ¢ sin 3 cos ¢ + sin B’ cos ¢'
{ jk taind [(cos B — cos 3')2 + (sin B cos ¢ + sin 3’ cos ¢‘)2]
(emﬁ cos ¢ + sin ﬁ' cos ¢')(cot B cos ¢ + cot F' cos ¢')
Jk (cos B - cosﬂ') + (sin B cos ¢ + sin §' cos ¢')2 } (3:21)

x

+

where the unit step function U(m — ¢') has been included to stress the fact that
the equivalent currents are zero if the face is not illuminated by the incident field.

Letting
sin 8 cos ¢ + (cos 8 — cos ﬂ')2
" ginf sin B/(sin A cos ¢ + sin B’ cos ¢')

(3.22)
results in

_ 2y eng _ Ulr-4)
~ jk “*sinfein ' (cosy + cos ¢')

(3.23)

ZYOE‘ sing Ulr-¢')

ik ‘sind B (cosy + cos¢')
_H,U(vr ~ ¢') (cot B cos ¢ + cot B’ cos ¢')
jkt sinf cos y + cos ¢/ '

n (3:24)

Since the above equivalent currents (referred to later as the LPO component of the
equivalent currents since they result from the reduction of the PO surface to a line

integral) were derived from a surface integral over a finite surface and integrand,
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it might be expected that they would remain finite for all aspects of incidence
and observation. Even though the currents themselves become infinite for certain
directions of incidence and observation, the fields radiated by the currents remain
finite, as explained helow. The magnetic current becomes infinite as sin8 — 0.
This is not a problem however, since it wiil always be cancelled by a factor of sin §
in the radiation integral due to the & x { term. I appears that the electric current
becomes infinite for edge on incidence (sin 3’ = 0), but the current remains finite
here since the factor of sin 8’ in the denominator is cancelled by a factor of sin ' in
E}. Both of the currents become infinite at the GTD shadow boundaries (8 = '
and ¢ + ¢' = L), This is only an artifact of the conversion of the surface integral
to the line integral. When the complete integration is done avound the edges of a
finite scatterer, the infinite contributions frem the disferent edges combine to yield
a finite result. This is illustrated analytically for the special case of backscatter
at broadside of a rectangular flat plate in Section 4.5 and in other cases by many

numerical examples in Chapter V.

3.3 Fringe Equivalent Currents

Many people have worked on the problem of finding equivalent edge cur-
rents for a perfectly conducting wedge that are valid away from the Keller cone.
Mitzner [24] derived Incremental Length Diffraction Coefficients (ILDC) using
some symmetry arguments. Knott [25] later showed that Mitzner’s ILDC could
be written as equivalent edge currents. Michacli {13] later derived equivalent edge
currents for the wedge problem using a more mathematically rigorous method.
Knott (25] also showed that Mitzner’s ILDC and Michaeli's equivalent edge cur-
rents are the same except that Mitzner's ILDC give expressions for the fringe field

only, while Michaeli's equivalent edge currents are for the total field. In this first
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attempt at the equivalent currents, the plate is modeled as a series of infinitesimal
strips oriented normal to the edge (i.c. the strips are parallel to the § direction).
In a later paper Michaeli [14] poinis out many singularities in the original ex-
pressions for the equivalent fringe currents and derives new expressions which have
fewer singularities. This is accomplished by changing the direction of asymptotic
_evaluation of the integral from normal to the edge to a direction skewed from the
edge normal. Not only does the new orientation of the strips reduce the number of
singularities in the fringe equivalent currents, it is, as will be explained later, also
more consistent with the physics of the problem. The original expressions for the
equivalent fringe currents had muny singularities. Michaeli points out that there
are 8o many singularities that it is probably impossible to remove ali of them. Ge-
ing back to the radiation integral over one face of the wedge he points out the cause
of two of the singularities. The equivalent fringe currents become infinite when
4-b = 4'.b where 4 is the observation direction, &' is the incident ray direction, and
bis the edge fixed coordinate direction defined previously in Figure 1. The current
becomes infinite here because the phase of the PO component of the surface cur-
rent cancels the phase of the outgoing wave. The {ringe equivalent currents also
become infinite when 3-b = & - b where & = {cos ' -+ bsin 8'. T'he fringe currents
are infinite here because the phase of the UTD surfsce current cancels the phase of
the outgoing wave. The cone of rays where the equivalent currents become infinite
(5 b=é- l;) in the second case may be reduced (o a single direction by a change
of variables. This is included in the summary below. A summary of the procedure

Michaeli (14] used to derive the fringe equivalent edge currents is given below:

1. The wedge is replaced at each point along its edge by an infinite taigent
wedge with flat faces.




. The currents on one face of the infinite wedge are expressed as a spectral

integral using the solution to the two-dimensional infinite wedge problem.

. The field due to these currents is expressed as a triple integral (one over the

spectrum aad a double integral over the surface of the tangent wedge).

. The order of integration is changed. The integration over the spectrum and

the integration over one of the spatial variables (b) are interchanged.

. The integral over b is replaced by an integraticn along the & direction (see

Figure 18), and the integration variable b is replaced by osin 8 in the inte-

gral.

. The asymptotic end point contribution from the integral over the first spatial

coordinate, ¢, is determined.

. The integration over the specirum is done, after the path has been distorted,
using the method of steepest descent. The contributions from the poles (PO

contribution) are removed leaving the fringe contribution only.
. The remaining integral is an integration along the edge of the wedge.

. The radiation integrel for electric and magnetic line sources along the edge
is compared to the integral reraaining in 8 and the equivalent edge currents

are identified as:

M! = MUTD _ gqPO (3.25)
¢ = uTD _ PO (3.26)
3g




b sinp’

Figure 18: Integration direction (or strip orientation) used in finding the
equivalent fringe currents.
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wheye:

MUTD _ 2jZ sin¢

(1/n)sin{(r — a) /n]csc a g

IUTD 23

ksic Bsin @' cos (7 — a) /n] — cos (¢ /n) " *

(3.27)

ksinf' ces(¢'/n) — cos[(r — a) /n]
sin {7 — a) /n]
sina
2j cot ﬂ’ i
knsin g’ By
PO ~2jZsingU(r - ¢')

Zsind

1/n {sin (4”/") P

—(cosa cot f' — cot B cos ¢)Hti}

(3.28)

IPO

ksin B sin§'(cos ¢’ + cosa) °

(3.29)

2jU(r — ¢') sing’ _,
ksin B'(cos ¢! + cos a)

3
Zsinf By

— (cot 8'cos ¢’ 4 cot B cos d))Hti] (3.30)

a = cos‘lp.=——jln(p+\/p2-—l) (3.31)

sin 3 cos ¢

b= g

4 {cos B — cos 8') cos 8’

3.32
sin? g/ (332)

and the branch cut chosen is assumed to be the same as previously obtained by

Michaeli [13]

[rr—————

r -—I\/p?'—ll p< -1

Vi -1={Vise cguss (3.33)

Ve

p>1

Although Michaeli does not specify the branch for the lnz in Equation (3.31),

it seems reasonable to take the principal branch of the nstural log. Specifically

Inz =In|z|+jarg(z) where 0 < arg(z) < . From the equations for the equivalent

currents, it is obvious that the arg(z) may also be taken between x and 2r, since

the equations remain unchanged if « is replaced by 2% — a. An equivalent inethod

of finding a is to choose the branch of cos™! 4 so that a is continuous for u = +1

and the two branches are chosen torunfroma=rtoa =x-jooand a = 0
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Figure 19: Branch for a.

to a = 0 — joo respectively, as shown in Figure 19. Notice that the last term on
the right hand side of the expression for I”TD in Equation (3.28) will be dropped
since it will be cancelled by a term of opposite sign due to the other face. Since
each edge is made up of two faces and the term does not depend on which face
is being lutninated this termn will always be cancelled by the corresponding term
from the other face {or a perfectly conducting wedge.

The only difference between the procedure Michaeli used to find these equiva-
lent currents and the procedure he used to find his previous equivalent currents (13|
is in step 5 listed previcusly. This change in variables not only results in fewer
eingularities in the equivalent currents, but also makes more sense physically as
Ufimtsev points out in {12]. The field on one of the plates of the iufinite tangent
wedge should only depend on the contribution from the strip on which the field
point is lying. The only strip orientation which meets this condition is the orienta-

tion described step 5, where the first spatial inlegration is taken in the & direction.
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In this case, all points along the strip lie on the Keller cone so that when the line
integral along the edge is evaluated the major contribution to any field point on
the sirip will be due to the strip itself. All other directions of integration result in
equivalent currents which “contaminate” the field along their strips with contri-
butions from the other strips. The singularities remaining in the new equivalent

fringe currents are listed below :

1. The currents become inﬁnit.e when the direction of observation is the same
as the direction of a glancing incident ray, that is the forward scattering
direction in the plane of the plate where 3 = 8' ¢ = 0, and ¢' = .
Michaeli refers to this as the Ufimtsev singularity.

2. If and MY do not tend to a definite limit, but remain bounded as 5 — 4.

3. Both I/ and M/ approach finite limits for edge on incidence (8' — 0 or
B — =), except of course when § = &' which corresponds to the Ufimtsev

singularity described in item 1.
4. Both I/ and M/ are discontinuous for ¢' = .

5. I/ and M are finite for 4.6 = —4'-6 or a¢' = , although the components

of the currents become infinite here.

Michaeli points out that all of these singularities except for the first one are in-
tegrable so the fringe fields found using these currents are finite for all aspects
of incidence and observation except in a single forward scatter direction. Since
the Ufimtsev siugularity is in the forward scattering direction, it will probably not
cause any trouble in solutions of practical importance. These singularities may

cause spikes and discontinuities in the pattern when the equivalent currents are

used as the bases for the new cocner diffraction coefficient. This behavior will be
illustrated in Chapter IV.
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3.4 Equivalent Currents Written in the Form of Diffraction Coefli-
cients

The equivalent edge currents may be written in a diffraction coefficient form
closer to that used by Kouyoumjian and Pathak [3]. Using the following trigono-

metric identities:

1 11 r—(a—1b) 7+ (a—b)
cosa + cos b 4sinb{[c°t( 4 ) mt( 4

o () ()}

I

R 1 (ad e R |
e (F ) (2B}
e = () e ()] a0
mmotet 3 (7)) = () aa

and a little algebra, one obtains the equivalent edge currents (O-face contribution

only) given by

M = MYPO 4 MUTD _ yPO (3.38)
I = IEPO + 197D - 1F9 (3.40)
where:
MLPO’ I#PO — lUi Ch(7)102(‘7’ ¢')
1Lpo 2 Cs
r-(v~-¢) r+(y-¢)
(8-
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(o (=572) - (2)
 fo () e ()

} MUTD’IngD _ l Ci(a),Co(a,7 - )
. 1yTb " Cs
r A B '
co (f__(_e__qb_)) + cot (Zf__._(e_ii_))]
2n 2n
MPO [P0 | mrPo, jLPO
™ = " (with v replaced by a)  (3.41)
PO JLPO
e X [ 4
_ B} sm¢ . B 1
Chl6) = Yok. sinfsinf'sinf ' Cs = Zoksin? @' (342)
_ jH}cot Bcos ¢ + cot ' cose
Ca(die) = k sin § sin O’ (3.43)
_ sinfcos¢ (cos B — cos 3')?
%Y = Tun B sin @ (sin 3 cos @ + sin A’ cos ¢') (3.44)
_ sinfBcosd  (cosf —cosf')cos '
cosa = o ] + Gl g (3.45)
. 0 ,n—¢'<0
Ut o= =9 (3.46)
1 ,r=¢'>0

The branch of cos™! is deacribed in Section 3.3. For the special case of » flat plate
(n=2), it is much easier to consider the contribution from each edge due to both
faces than to consider the contribution from the edge due to each face separately.
For the case of a flat plate the total contribution from each edge is given by (note:
the normal may be taken in either direction perpendicular to the plane of the

plate.):
' M = MLPO . MUTD _ pgPO (347)
I = Li+ln (3.48)
Lm = IERO 4 1UTD - 1O (3.49)
45




where: -

MLPO":I;E;PO _ _l_si Ci(7), Caln, ¢')
2

[LPO c,
r—(v-¢)\  (r+(y-¢)

o (=822 - 2522

¢ () i)

il

MUTD:Ig;TD _ }_ Ch(a),Ca(a,r - a)
Ie(ITD 2 C,
_ Yy — Al
{lot (572 re (572
4 4
r _ ' !
£ [eot (.’:__(ﬁ_t_é_)) +cot (M)] }
_ 4 4
MFO, [P0 [ miPo zro ]
: = (with v replaced by a)
PO [LPo
. f -1 ,x-¢' <0
S§' = ¢ (3.50)
|1 - ¢ >0

where C),, C3, C,, v, and a are the same as the expressions given earlier in Equa-
tions (3.42) to (3.45). The terms may be associated with the O-face incident
and reflection shadow boundaries and the N-face incident and reflection shadow

boundaries, as indicated previously for the UTD diffraction coefficients.

3.5 New Corner Diffraction Coeflicient

Buyukdura [22] has derived the corner diffraction coefficients from the equiv-
alent currents using the ltntionar‘y phase approximation. If the object is made
up of flat faces with straight edges then all of the edges are terminated in sharp
vertices. It is assumed that the current near each edge, even very near the vertex,

is unperturbed by the other edge making up the vertex. The same assumption
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was made in the derivation of the previous corner diffraction coefficient given in
Section 2.7. Despite this shortcoming the corner diffraction solution gives fairly
accurate results (see the next chapter for numerical results). Since it is assumed
that the two edges forming the vertex do not interact near the vertex (to first
order) the scattered field may be expressed as a line integral along the edges of the
object. The line integral along the edges may obviously be expressed as the sum
of integrals along each individual edge such that

. Jee IR pbin o ikbaket
E® = — / ZodxdxiI+5xiM]|eilkebthet) g 3.51
;n“ 7 %[o | (3.51)

where the first sum is over the faces of the object, the second sum is over the edges
of each face, and the edge fixed coordinates { and b along with the limits on the
integrals obviously depend on which face and edge are being considered. Looking

only at the contrilation due to one face and one edge at a time, one finds that
jke~ JER
4 R

- by . R .
B*(i,n) = /a‘ ™2ixsxil+sxiM|eihesthizly,  (352)
n

where the coordinates are defined in Figure 20. Notice that along the straight edge
the edge fixed coordinate directions (b,#,£), and the angular directions (3',¢', 8,¢)
are constant. The only factors in the equivalent currents which vary along the
edge, therefore, are E{ and H{. To simplify the integration, these factors will be

separated out using the following definitions:

2jYyGi.E} 2jGin A}

I'= tenpsnd T keinpeng (3.53)
_ 2jZ,GmH]}
M = fenpunp (3.54)

From which it is easily seen that G, G, and Gy are all constant along the
straight edge. Taking the phase reference at some arbitrary point O along the
t-axis and using;:

Ej(2) = Ef(0)e~ikcoe?’ (3.55)
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Figure 20: Edge Fixed coordinates for a straight edge.
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H}(z) = Hj(0)e TkcosF’ (3.56)

z=0 (3.57)
ky =kcosf' (3.58)
gives
ps _ __l_enij L GieEg(O) GimZOHti(O)
E = 2r R -/a $xsxt sinfsin8  sinBsinf
i :
+ sxi ——~———~Z‘,’G"‘§*(e) eikz(cosp—co ') 4, (3.59)
sin 3 sin 8

Since the term in brackets is constant, using either the method of stationary phase
or regular integration (see Chapter II) and only including the contribution from

the end point at b along with the following relations:

E} = B sin 8’ (3.60)
H} = _L1E g (3.61)
Zy ¢
dxi=—-¢sinf (3.62)
ixsxi=Lfsinp (3.83)

results in the following expressions for the new diffraction coeflicients in terms of

the new equivalent currents:
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c D¢ D& E? ~jka
Pi=] ™ T2 7F |2 - (3.64)
; 0 Df ;,
" ; - - - i
DS + I/ Yo E}
1 sinfsing .
Di|==%| - Z;cosﬂ - cos ' M/ZyH; (365)
D§ |+ Im/H}

where Ef,, and E; are the § and ¢ components of the corner diffraction contribution
from one corner, one edge, and one face. The phase is referenced to the corner.
EZ?' and E;, are the ﬁ' and ¢' components of the incident field at the corner.
The angles are the edge fixed angles with the origin located at the corner as
illustrated in Figure 21. The equivalent currents I, Iin, and M are given by
Equations (3.41) and (3.39), respectively, or by Equations (3.49) and (3.47) for
the case of a flat plute. The sign used depends on which end point the particular
contribution is coming from and the direction of integration. The direction of
integration is always chosen to be in the counterclockwise direction when the face
is viewed from the positive n-direction. The negative sign is used for the first
corner contribution of each corner (as the direction of integraiion is traced out)
and the positive sign is used for the second corner contribution of the edge as
indicated in Figure 22. Equations {or the corner diffraction coefficients with the
expressions given in Equations (3.41) and (3.39) substituted into Equation (3.65)

are given in Appendix A.
3.8 Conclusion
Expressions for new equivalent currents based on the PTD are given in Equa-

tions (3.39) and (3.41). The new equivalent currents are used to derive a new

corner diffraction coefficient. Both the new equivalent currents and the new cor-
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Figure 21: Definition of the Angles used in the New Corner Diffraction
Coefficients.
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Figure 22: Direction of Integration for one face.

ner diffraction give the same results for the first order scattering from a convex
body made up of perfectly conducting flat plates. Even though the equivalent cur-
rents are not valid in the region of a vertex (corner), it will be shown in Chapter V
that the equivalent currents (and the corner diffraction coefficients) give reason-
able results for many directions of incidence and observation. Several important
properties of this solution are discussed in Chapter IV {ollowed by several examples
in Chapter V.
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. CHAPTER IV

PROPEATIES OF THE NEW CORNER DIFFRACTION
SOLUTION

4.1 Introduction

The behavior of the new corner diffraction coefficient will be discussed for
various situations. The significance of its various properties will be outlined to
give insight into how the solution may be expected to behave in certain special
cases. Several more examples given in Chapter V illustrate that the solution agrees
closely with either the Method of Moments or previous first order solutions in most

cases.

4.2 Singularities

First the singularities in the solution will be discussed. The singularities in the
new corner diffraction coeflicients are simpiy the combination of the singularities in
the line PO component and in the {ringe component of the new equivalent currents.
The singularities and some examples illustrating how they may effect a pattern are

given below.

1. Ufimtisev's singularity in the forward scatiering direction in the half plane
* of the face (8 = f' ;¢ = 0, and ¢' = x). This singularity was previously
diecussed in item 1 of Section 3.3. To illusirate how this may affect the

results, the bistatic RCS of a two wavelength square plate is caiculated. In the
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Figure 23: Plate Geometry for the Illustration of Ufiimtsev’s Singularity.

first example the source remains fixed at 8 = 90° and ¢* = 0° (see Figure 23)
while the pattern is taken in the ¢ = 0° plane. The results for the H-plane
pattern in the x-¢ plane are shown compared with a Method of Moments
solution in Figure 24. This result shows that the new corner diffraction
solution is fairly accurate for directions greater than 15° to 20° away from
the forward direction for cases of grasing incidence. The previous corner
diffraction solution and equivalent curreat solution also become infinite in the
forward direction for grazing incidence. The pirevious solutions are compared
with the new solution in Figure 25 for the T-plane pattern and the geometry
given above. The new and old solutions are actually so close that they

54




—  Corner Diffraction
-« Moment Method

......

[ =3
CTI - ] 1 T Y

ﬁi L § ] ¥ ] R4
0 50 20 180 240 300 360
© (deg.)

Figure 24: H-plane pattern for ¢ = 0° cut of a ZA  square plate with a fixed
source at §; = 90°,¢; =
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Figure 25: H-plane pattern for ¢ = 0° cut of a 2) square plate with a fixed
source at §; = 90°, ¢, = 0°.
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Figure 26: H-plane pattern for ¢ = 45° cut of a 24\ squarc plate with a fixed
source at §; = 90°,¢; =

are indistinguishable in the plot in Figure 25. To see how moving off the
Keller cone affects the behavior of the solution, the bistatic RCS of ihe two
wavelength plate is plotted for a pattern in the ¢ = 45° plane while the source
is held fixed at 6; = 90° and ¢; = 45°. The recults {or the H-plane pattern
are plotted along with Moment Method calculations in Figure 26. In this
example the new corner diffraction solution is fairly accurate in the msajor
lobe region away from the forward direction (8 = 90°). The previous corner
difiraction solution and previous equivalent current solution are compared
with the new solution for this example in Figure 27. Although the pattern

is taken away from the Keller cone, all three solutions are fairly close.

2. I,),; (and Dj) and M/ (and Dj) do not tend to definite limits as  — & , where

& = {ein @ + bcos' and is shown in Figure 18, but they remain bounded.
In practice this means that both Dj and Dj, and therefore E‘g and Eg. are
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Figure 27: H-plene pattern for ¢ = 45° cut of a 2) square plate with a fixed
sourcs at 8; = 90°, ¢; = 45°.

discontinuous at this point in the pattern. A simple example illustrates how
this discontinuity can affect a pattern. The bistatic RCS from a flat plate,
two wavelengths on a side, in the x-y plane is considered. The source, linearly
polarized in the ¢* direction, remains fixed at 6% = 45° and ¢* = 0° while
the pattern is taken near the x-y plane (§ = 89°). The source geometry
is shown in Figure 28. The bistatic RCS is given in Figures 28 and 30 for
the co-polarized and cross polarized fields, respectively. The abrupt null at
¢ = 135° in the co-polarized pattern and the spike at the same locaiion in
the cross-polarized pattern are due to discontinuities in the contribution from
edge 4 (indicated in Figure 28). The point ¢ = 135° coincides with 84 = 8
and ¢4 = 0 where fy, ), and ¢ are the edge fixed coordinates for edge 4.
Due to the geometry f¢ = ¢ and ¢q 2 6 5o the discontinuity in 044 is due to
the discontinuity in D§ and, likewise, the discontinuity in og4g is due to the

discontinuity in Df.




g0 6=45 6

Edge 4

/ 2 7

X
Figure 28: 2) square plate in the x-y plane illuminated by a fixed source located
in the 8° = 45°, ¢' = 0° direction.
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Figure 29: RCS for the § = 89° cut of a 2A square plate with a ¢ polarized fixed
source at ' = 45°, ¢* =
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Figure 30: RCS for the 8 = 89° cut of a 2A square plate with a ¢* polarized fixed
source at §* = 45°, ¢* = 0°.
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Figure 31: Fj,, ' = 135°

The specific terms which are discontinuous in D§ and Dj, are examined fur-
ther here. The discontinuity in D§ at this point is due to the discontinuity

in IUTD Specifically, it is due to the following factor:

cos & cot ' — cot A cos ¢
tina '

Fim(ﬁaﬁ':¢) =

(4.1)

F, is plotted as a function of § with ¢ as a parameter and 8’ = 135° in
Figure 31. For ¢ on the order of a few degrees, F;,,, changes sign abruptly at
B = f'. This is exactly what happens to the contribution to the ¢ polarized
field from edge 4 in the above example. The same conclusion may be reached
analytically by realizing that

cosacotf' —cotfcosd A
sina ﬁédnﬂ')z +(AB)?

Fim(8,8',4) = (4.2)

where

a¢

il
o

(4.3)




AB=p-F (44)
for A¢ and AS small. Which will further reduce to the following signum
function if A¢ << AB:

cos a cot ' — cot fcos ¢
sina

Fim(ﬂ’ :G" ¢) =

gn(AB) (4.5)

as ¢ — 0.

The discontinuity in Df, is examined next. The only factor in Df that is dis-
continuous at the intersection of the Keller cone and the half plane associated

with the edge (6 = ' and ¢ = 0) is

Fp=o2f, (4.6)

This factor only causes a discontinuity in the MUT? term since another
factor in the MFPO causes MPO to go to gero here. Fy, is plotted as a
function of 8 with ¢ as a parameter and 8’ = 135° in Figure 32. For ¢
on the order of a few degrees, Fyy, becomes a very narrow spike at § = 3'.
This also occurs to the contribution for the § polarized field from edge 4 in

the above example. The same conclusion may be reached analytically by

realizing that:
N R (81)
oo+ (5)°
where:
Bo=¢ (49)
5=p-8 (49)

for A¢ and AS small. Equations (4.2) and (4.7) show that F;,,, and Fy, are
very similar with the major difference being that the roles of AS and A¢
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Figure 32: Fyy, 8' = 135°

are interchanged. F;,, and Fy, are plotted again in Figure 33 and Figure 34,

respectively, this time as a function of ¢ with 8 as & parameter and §' = 135°.

These discontinuities are not restricted to the case of bistatic scattering and
may also appear for backscatter examples. The backscattered field (co- and
cross-polarized), for a § polarized field incident upon the plate shown in Fig-
ure 28 and calculated close to the x-y plane (6 = 89°), is shown in Figure 35.
In both cases the patterns have a glitch, due to the contributions from the far
edge at ¢ = 90°, similar to those in the previous bistatic results. It should
be noted that the fields for a @ polarised incident field (shown in Figure 36)

are smooth for this pattern. The cross polarized field, g4y, is not visible on

this plot since it is below —50 dB /A% through the entire pattern.
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Figure 33: F;,,, ' = 135°
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Figure 34: Fp, ' = 135°
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The discontinuity in the new equivalent currents (and the diffraction coef-
ficients) at the intersection of the Keller cone and the infinite half plane
associated with the edge (8 = A' and ¢ = 0) may be expected to cause
discontinuities or narrow spikes depending on the polarization and the pat-
tern cut. As the examples illustrate these disturbances only affect a typical
pattern cut for around 5° to 10°. Further information on how the solution

behaves in this region is discussed in Section 4.3.

. Excluding the case when the diffracted ray is in the same direction as the
incident ray (see item 1), the currents are all finite for both edge on incidence
(' — 0,7) and edge on observation (8 — 0,7). This is shown for edge
on incidence in Appendix B. For edge on observation it is easily seen by
noting that the factors of 1/sin § in the equivalent currents are cancelled by
a factor of sin 8 in the numerator of the radiation integral due to either & x ¢
or & x & x { depending on whether it is an equivalent electric current or an

equivalent magnetic current.

§ and Df are discontinuous for ¢' = =, since IF0, I,I,;,PO, MPO pqLPO
are discontinuous for ¢’ = , except for two important special cases. In the
case of backscatter ¢ = ¢' = n and all of the components with the factor
containing the step function are zero for ¢’ = «, so that the resulting corner
diffraction coefficient is continuous. When the observation point is on the
Keller cone ILPO = JPO and MLPO = MPO g, that the discontinuous
components in the corner diffraction coefficients cancel leaving the corner
diffraction coeflicients continuous. It is pointed out how this discontinuity

may affect some typical patterns in Section 4.4.




5. D, DS, and Df are all infinite at the shadow boundaries because the LPO
components are infinite. The LPO cox:nponents are infinite because the vec-
tor identity used to derive them is not valid at the shadow boundaries (see
the end of Section 3.2). This is not a problem in practice since the cor-
ner diffraction coefficients will remain finite a small distance away from the

shadow boundaries.

6. All of the diffraction coefficienis become infinite on the Keller cone. This
is not a problem however, since for straight edges the contribution from the
other corner of the edge will also be infinite and their sum will combine to

form the familiar sin £ /z paitern associated with a constant current element.

7. The contribution to the scattered field from the individual corner happens
to be infinite when 8 = §'. This is not the case for the finite plate, however,
since the individual contributions from eall of the edges balance each other
to give a bounded result. This is shown analytically in Section 4.5 for the
special case of backscatter from a rectangular plat at normal incidence. It
is also illustrated many times in Chapter V since § = §' for at least one edge

in all of the patterns taken in the principle plane.

4.3 Boundary Conditions

Since the new solution is only valid in the far zone it does not need to meet
the boundary conditions on the scattering structure, except for the special case
of a half plane (semi-infinite). Actually the scattered field in the plane of a given
face must meet different conditions. The conditions on the scattered tield may be
easily found using the far zone radiation integral combined with the fact that the

faces of the structure are flat. Given an arbitrary perfectly conducting flat face
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Figure 37: Boundary Conditious Example.




shown in Figure 37 and illuminated from some arbitrary direction, the far zone

scatiered field is given by

E-'s _ ]kZo Bﬁjk&
" 4% R

§ %3 X f /S o) dudy (4.10)
where the important coordinates are defined in Figure 37 and J, is the actual
current on the surface of the face. Obviously J, only has nonzero components in
the & and § directions. As a result when the observation point is in the plane
of the face {the x-y plane} the z component of the total scaitered electric tield
must be zero. This alse implies, by reciprocity, that the total scattered fizld in
the special case when the face shown is the only scattering object (n=2) should be
gero everywhere for a Z directed source placed in the x-y plane. These conditions
ouly apply to the total scattered field and do nct necessarily apply to a first order
solution as is given here.

It is as:umed that the first order fields radiated by the equivalent currents
must meet these conditions in the plane of the face. (Why this assumption is not

correct will be discissed later in this section.) This assumption combined with the

radiation integral for the equivalent edge currents given by

L jkeTIMR . N 9%y
E’“i‘éi‘fz’“ (20 x5 x {1+ x i M) e*¥Pa (4.11)
c

or the corner diffraction coefficients lead to the {ollowing properties:
1. M=0and D =0 when¢p=0or¢p=r,

2.In=M=0and D{ =D§=0when ¢’ =0andn=20r ¢ =wandn=2
(Ie = 0 and D§ contributes zero to the scattered field aiuce E;, = E! = 0).

Plugging ¢ = 0,x into the new solution it is seen that the first property is met

everywhere in the plane of the face with the exception of two directions. One
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is in the forward scatter direction which corresponds to the Ufimtsev singularitv
discussed ir: item 1 of Section 4.2. The other direction where this property is not
met is the directior where the Keller cone and the infinite half plane associated
with the edge meet. It is interesting to note that this direction lies alorg the
infinite strip used in deriving the equivalent fringe currents. T./0 of the equivalent
currents associated with the solution to the infinite wedge (IZT2 a4 MUTU) are
discontinuous here, as illustrated in item 2 of Section 4.2. It appears that the
solution meets the first far zone coadition given above everywhere except on this
striy where it meets ihe boundary conditions on a PEC, Plugging in ¢' = 0,7 and
n = 2 into Equations (3.47) and (3.49) it is easily seen that the second condition
given above is not met in general.

Rotl the previous squivalent currents given in Section 2.6 and the previous
corner diffraction sclution given in Section 2.7 meet the boundary conditions on
the infinite half plane associated with the edge. That is I = G (and D§ = 0) for
¢=0and I =0 (and D§ =0) for ¢' = 0.

It has been shown that, in general, the first order solution should not meet
the fur zone conditions described here. Specifically, both Sikta {26] (for the special
case of backscatter) and Tiberio [27] have shown that for the two-dimensional
problem of an infinite strip of finite width the douBle diffraction term cancels
the first order term so thai the far zone conditions in the plane of the face are
met. '.'he new solution is still consistent with this requirement since it reduces
to the previous equivalent currents for observation points on the Keller cone (see
Section 4.6). Since the solution to the infinite quarter plane has not been reduced
to a ray optical form, the conditions that the first order field must meet in the
plane of the face when the observation point is not on the Keller cone are not clear.

In this case the new solution and the previous solutions behave much differently.
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Therefore, when the observation point is not on tke Keller cone the higher order
terms for the new solution may be significantly different than those developed for
previous solutions. Some results for three-dimensional problems including higher
order terms have been published by Sikta, ef al. {2] and [26] and Michaeli {28] using

the previous equivalent currents and the new equivalent currents, respectively.

4.4 Reciprocity

Although only the total scattered field must satisfy reciprocity, once again it
would seem desirable for the first order scattered field given by the new equivalent
currents or corner diffraction coefficients to also satisfy reciprocity. Boib the re-
flected GO field and the edge diffracted field satisfy reciprocity even though they
only make up a partial contribution to the total scattered field. Even though the
new solution is not reciprocal, several examples are given that show it is probably
close enough, in most cases, for engineering purposes.

A simple example is used to illustrate that the new solution is not reciprocal.
This is shown by considering where the singularities of the fringe occur. Neither
I,{; = [UTD _ [P0 gor MS = MUTD _ PO approach definite limits as the
observation point approaches the intersection of the Keller cone and the infinite
half-plane associated with the edge of the plate. However if the source is allowed to
approach this position in the same way all of the currents are finite and approach
definite limits. Using these properties a simple example is given which shows that
the solution is not reciprocal. A triangular flat plate, as shown in Figure 38, is
illuminated by a source positioned above the plane of the plate in position one.
The observation point is placed at position two in the plane of the plate such that
it lies on the Keller cone for the points on edge one, as indicated in Figure 38.

Both I,'f, and M/ are undefined for points along edge one which makes a nonzero
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Figure 38: Reciprocity example.
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contribution to the radiation integral. Therefore the scattered field is not defined
here. However if the source and receiver are interchanged all of the currents are
well defined and therefore the scattered field will be defined. It is not surprising
that the new solution is not reciprocal since it contains PO terms which are not
reciprocal themselves.

Several examples of bistatic scattering from a flat plate or & cube are given
here to illustrate that the solution is essentially reciprocal in many instances. All
of the examples are in terms of linearly polarized antennas in the far zone of the
scatterer. First the RCS is calculated when the first antenna is receiving and the
second antenna is transmitting. The RCS is then calculated for the reciprocal
problem (antenna one transmitting and antenna two receiving). Both patterns are
plotted on the same graph as a function of the position of antenna one, so that
they may be easily compared.

The first set of examples show the scattering from a square plate two wave-
lengths on a side as shown Figure 39. In the first two examples both antennas are
moved in the principie plane while they are offset by 90° in that plane, as shown in
Figure 39. Figure 40 shows the results when both antennas are linearly polarized
in the 6 direction, while Figure 41 shows the results when they are both lineacly
polarized in the ¢ direction. The cross-polarized fields are zero in both cases. The
results show that in this case the solution is reciprocal for practical purposes. This
is not surprising since in this case the major contribution to the fields comes from
the front and back edges. The receiving antenna lies on the Keller cone of the
front and back edges for the entire pattern cut. The new solution is reciprocal
for observation points on the Keller cone since, as is shown later in Section 4.6, it
reduces to Keller’s result there.

In the next two examples both antennas are moved in the ¢ = 45° plane offset
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Figure 39: Relative positions of the two antennas for the first two patterns.
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Figure 40: RCS of 2) square plate for § polarized antennas (which are positioned
as indicated in Figure 39) in the ¢ = 0° plane.

. — Antenna 1 Rx (5 boluind) {

90
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Figure 41: RCS of 2) square plate for ¢ polarized antennas (which are positioned
as indicated in Figure 39) in the ¢ = 0° plane.
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Figure 42: Relative positions of the two antennas for the next two patterns.

by 9G° in that plane, as shown in Figure 42. Figure 43 shows the results when
both antennas are linearly polarized in the § direction, while Figure 44 shows the
results when they are both linearly polarized in the ¢ direction. The cross-polarized
fields are zero in both cases. Although the results are not nearly as close as in the
previous patterns, the major differences occur when either the receiver or the source
is near the plane of the plate where higher order terms may become important.
The antennes are moved in the ¢ = 30° plane offset by 30° in that plane as shown
in Figure 45 for the next three examples. Figure 46 shows the results when both

antennas are linearly polarized in the § direction, while Figure 47 shows the results
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Figure 43: RCS of 2) square plate for 6 polarized antennas (which are positioned
a3 indicated 1n Figure 42) in the ¢ = 45° plane.

— Antenns ! Rx (7: polarised)
"+« Antenns } Tx (¢ polarizsed)

Figure 44: RCS of 2 square plate for é polarized antennas (which are positioned
as indicated in Figure 42) in the ¢ = 45° plane.
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Figure 45: Relative positions of the two anteunas for the nexi three putterns.
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Figure 46: RCS of 2) square plate for 8 polarized antennas (which are positioned
as indicated in Figure 45) in the ¢ = 30° plane.

when they are both linearly polarized in the ¢ direction. In this case, however,
the cross-polarized fields are no longer zero. It should be noted that reciprocity
does not imply that ogy = 049 for bistatic scattering, and in general 04 # 044
for bistatic scattering. Keciprocity implies that the pattern remaine unchanged if
the antenna originally transmitting receives while the antenna originally receiving
transmite, but the positions of the two antennas remain unchanged (in the bistatic
case, 0gg, 0gg ive the results when the positions of the antennas are interchanged).
Figure 48 gives the cross-polarized results when antenna one is linearly polarized
in the & direction and antenna two is linearly polarized in the ¢ direction. If
the polarizations are reversed, that is antenna one is linearly polarized in the ¢
directivn and antenna two is polarized in the 6 direction one simply obtains the
mirror image of both curves due to the symmetry of the problem.

The co-polarized fields are close to being reciprocal in this case. The cross-

polarized fields are reasunably reciprocal for vegicns away from the plane of the
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Figure 47: RCS of 2A square plate for ¢ polarized antennas {which are positioned
as indicated in Figure 45) in the ¢ = 30° plane.
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Figure 48: RCS of 2) square plate for cross polarized antennas (which are
positioned as indicated in Figure 45) in the ¢ = 30° plane.
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Figure 49: Relative positions of the two antennas for the next four patterns.

plate. In regions near the plane of the plate, the pattern with the null at § = 90°
is probably more accurate since the plate does not radiate any 6 polarized feld in
this plane. The lack of a null here in the other case may be explained by the fact
that I'y (or D§) does not meet the conditions in the plane of the face described in
the previous sestion. Finally the antennas are moved in a plane found by rotating
the x-z piane 120° in the ¢ direction followed by tilting it 30° in the § direction,

as shown in Figure 49. The two antennas are then offset by 150° in the x-y plane.

Figure 50 shows the results when both antennas are linearly polarized in the
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Figure 50: RCS of 2) square plate for horizontally polarized antennas (which are
positioned as indicated in Figure 49).

direction parallel to the plane the pattern is taken in and perpendicular to the
incident ray (Horizontal Polarization), while Figure 51 shows the results when they
are both linearly polarized in the direction perpendicular to the plane the patiern
is taken in (Vertical Polarization). Once again the cross-polarized fields are not
gero. Figure 52 gives the cross-polarized results when antenna one is horizontally
polarized and antenna two is vertically polarized. Figure 53 gives the patterns
for the opposite case where antenna one is vertically polarized and antenna two is
horizontally polarized. The discontinuity in the four patterns which occurs when
¢ = 120° nud antenna two is transmitting (solid curves in Figures 50, 51, 52,
and 53) is due to the discontinuity in the PO components described in item 4 of
Section 4.2. The discontinuity in the four patterns which occurs when ¢ = 90° and
antenna two is transmitting is due to the discontinuity in the contribution from
the edge alung the x-axis. The direction ¢ = 90° corresponds to the intersection of

the Keller cone and the infinite half plane associated with this edge (5 = §] ~ 30°

81




so0y, B . P
. vy o L%

s
B
A .

Teeccasseonm - . .
CY

o
-
.....

f—  Antenna I Rz (VP)
i =~ Antenna 1 Tx (VP)

o 3 60 % 20 50 0
¢ (deg.) *

Figure 51: RCS of 2 square plate for vertically polarized antennas (which are
positioned as indicated in Figure 49).
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Figure 52: RCS of 2A square plate for antenna one horizontally polarized and
antenna two vertically polariced (which are positioned as indicated in Figure 49).
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Figure 53: RCS of 2) square plate for autenna one vertically polarized and
antenna two horizontaj.ly polarized {which are positioned as indicated in
Figure 43).
and ¢; = 0°) where the corner diffraction coefficient is discoutinuous {see item 2
of Section 4.2). The discontinuity in the four patterns which occurs when ¢ = 90°
and antenna one is transmitting (dashed line in Figures 50, 51, 52, and 53) is due
to the discontinuity in the PO components described in item 4 of Section 4.2. For
directions at least 15% to 20° away from these discontinuities the solution is close

to being reciprocal.

To get some indicution of the effect of wedge angle on these examples the
same patterns are repeated for the case of a cube two wavelengths on & side. The
cube is positioned in the usual way so that each edge is parallel to one of the three
axes. The relative positions of the antennas for the first two patterns ere given in
Figure 39. Figure 54 shows the results when both antennas are linearly polarized
in the § direction, while Figure 55 shows the results when they are both linearly

polarized in the ¢ direction. As in the case of the flat plate the co-polarized field

83




Q —
—
™~
<
~
0 =
©
o
©
n-
—  Antenna 1 Rx (6 polarised)
o |- Antenna 1 'I'x (é polarized)
a1 i
‘jr‘ Y N BN Bt T T B

0 3 &0 90 20 ‘.
0 (deg.)

Figure 54: RCS of 2A cube for § polarized nntennas gwhich are positioned as
indicated in Figure 39) in the ¢ = 0° plane.
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Figure 556: RCS of 2\ cube for ¢ polarized antennas Sw}uch are positioned as

indicated in Figure 39) in the ¢ = 0° plane.
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Figure 56: RCS of 2) cube for § polarized antennas (which are positioned as
indicated in Figure 42) in the ¢ = 45° plane.
in the principle plane is reciprocal for practical purposes. This is expected since
the major contribution to the scattered field is {rc;m the edges perpendicular to the
pattern plane. In both examples the receiving antenna lies on the Keller cone of
these edges where the solution reduces to Keller's form as discussed in Section 4.6.
The small discontinuity at the peaks of the ¢ polarized pattern is due to the
contribution from the two edges parallel to the pattern plane and farthest from
the source and receiver. The contribution from these two edges is discontinuous
in this case due to the discontinuity in Df and D§ described earlier in item 2 of
Section 4.2.

In the next two examples both antennas are moved in the ¢ = 45° plane offset
by 90° in that plane, as shown in Figure 42. Figure 56 shows the results when both
antennas are linearly polarized in the § ditection, while Figure 57 shows the results
when they are both linearly polarized in the ¢ direction. The cross-polarized fields

are zero in both cases. The results are fairly close to being reciprocal, although
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Figure 57: RCS of 2X cube for ¢ polarized antennas (which are positioned as
indicated in Figure 42) in the ¢ = 45° plane.

not as close a8 in the principle plane. All of the patterns are discontinuous at
¢ = 0°,90°,180°. This discontinuity is due to the discontinuity in the LPO and
PO terms of Df and D§ as described in item 4 of Section 4.2. The antennas are
moved in the ¢ = 30° plane offset by 30° in that plane as shown in Figure 45 for the
next three examples. Figure 58 shows the results when both antennas are linearly
polarized in the § direction, while Figure 59 shows the results when they are both
linearly polarized in the ¢ direction. In this case the cross-polarized fields are not
zero. In order to avoid numerical problems associated with edge on incidence (see
Appendix B) the cube was tilted 5° in the plane normal to the ¢ = 30° plane for
these calculations. Figure 48 gives the croes-polarized results when antenna one
is linearly polarized in the § direction and antenna two is linearly polarized in the
¢ direction. 1f the polarisations are reversed, that ic, if antenna one is linearly
polarized in the ¢ direction and antenna two is polarized in the 8 direction, one

simply obtains the mirror image of both curves due to the symmetry of the problem.

86




25

! —  Antenna 1 Rx (6 polarised)

7 7 3 1 T "
0 » 60 % 20 150 0
O (deg.)

Figure 58: RCS of 2) cube for 6 polarized antennas (which are positioned as
indicated in Figure 45) in the ¢ = 30° plane.
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Figure 59: RCS of 2 cube for ¢ polarized antennas (which are positioned as
indicated in Kigure 45) in the ¢ = 30° plane.
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Figure 60: RCS of 2) cube for cross polarized antennas (whicl.l are posilioned as
indicated in Figure 45) in the ¢ = 30° plane.

The co-polarized fields are essentially reciprocal in this case. The cross-polarized
fields are close to being reciprocal, except in the region from @ = 60° to 90°. All
of the patterns for the case corresponding to the final example given for the plate
have so many discontinuities that it is very difficult to get any information from
them. For this reason they have been omitted here.

The major difference between the results for the flat plate and the results for
the cube is the increase in the number of regions in space where the PO disconti-
nuity (item 4 of Section 4.2) shows up in the patterns.

The examples given here illustrate that the solution is close * i+ ng reciprocal

for the cases shown, except in regions of space where the patterns are discontinuous.

4.5 RCS of a Rectangular Plate at Broadside

As a check on the corner diffraction coefficient, the radar cross section of a

flat rectangular plate (length ¢, width w, and area A) at broadside was calculated
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analytically (see Appendix C). The resulting co-polarized cross section, for either

polarization, is given by

4m A2
YA

o= (4.12)

This is the well known PO result, which is generally accepted as adequate for engi-
neering purposes for sufficiently large plates. Therefore the new corner diffraction
solution can be expected to give the correct value for backscatter from a general

shape {consisting of flat plates) at broadside.

4.6 Equivalent Currents on the Keller Cone

The expressions for the equivalent currents on the Keller cone are easily ob-
tained by letting 8 = ' in Equations (3.38) and (3.40) combined with the fact
that a = 4 = ¢ in this case. The resulting expressions for the equivalent currents

with the contribution from both faces included is:
iH} w—(¢ ¢') ™+ (¢ - ¢')
= - t
M= g o () e

=
e LI
(e

__ iH " (¢- ¢') T+ (p- ¢)]
= b { = (5

- [cot (-’El-(é?—f—)) + cot (”—’L%ﬁi)]} (4.14)

These are the same expressions for the equivalent currents as obtained by Ryan
and Peters (1] given in Section 2.6. Ryan and Peters equivalent currents predict
the same fields as Keller [10] obtained if the edges are straight and the observation
point is on the Keller cone. Since the new equivalent currents and the new corner
diffraction coefficient give the same result, the corner diffraction coefficient reduces

to Keller's result for observation points on the Keller cone.
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4.7 Physical Significance of Parameters o and v

The twe angles a and v in the expressions for the equivalent currents obvi-
ously do not represent physical angles since they may become complex for several
directions of incidence and observation. It is easily seen, however, that they are
related to the directions along which the asymptotic endpoint contribution is taken
in deriving the equivalent currents (described for the equivalent fringe currents in
item 5 of Section 3.3). The first term, in Equations (3.44) and (3.45) is common
to both a and v along with the previous a parameter obtained by Michaeli [13] in
his first paper on equivalent currents. The second term depends on the direction
of integration used in finding the equivalent currents. Buyukdura [29] has shown
that the equivalent currents associated with the PO surface integral (LPO terms)
may also be obtained by making two simple changes to the procedure Michaeli
used to find the fringe equivalent currents. The GO current is used on the infinite
tangent wedge instead of the true current and the spatial integral is taken in the

direction such that
cos § — cos
#in 8 cos @ + sin §' cos @'

cot 8y = (4.15)

vo:o- €. s the angle betwesn the positive edge tangent and the direction of in-
tegration as shown in Figure 61. As explained in Chapter III the spatial integral
used to evaluate the fringe equivalent currents was taken in a direction 83, where
cot 83 = cot 3', also shown in Figure 61.

Using the above angles it has been found that the new equivalent currents (and
corner diffraction coefficients) may be written in a symmetric form for the special
case of a fiat plate. In this symmetric form, the arguments of the trigonometric
functions are real valued for all angles of incidence and observation. It is also

speculated that this may be done for a general wedge angle, although a methed of
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Figure 61: Integration direction (strip orientation) used to find the LPO
components of the equivalent currents.
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functions are real valued for all angles of incidence and observation. It is also
speculated that this may be done for a general wedge angle, although a method of
doing so has not been found. In the special case of a flat plate (n=2) the currents
may be rewritten by properly using Equations (3.47) and (3.49) along with the
trigonometric identities given in Section 3.4. The resulting expressions for the new

equivalent currents are given by

M = MLPO 4 MUTD _ pPO (4.16)

[
|

= I+ 1 (4.17)
IEPO 4 [UTD _ 170 (4.18)

where:

MLPO, I#PO

1

IeI'PO

1
2
I
MUTD [UTD {

I§’ TD Cs

1
2
ot (T2 -¥2)) _ (7 (Y2~ ¥2)
{[ tg-(¢'24+1l’g') )_ Ct£+(¢’2+\b' )1
o () e ()
PO [PO .
MPY I a:‘z(;)

=55 o2
| |

‘(:ot(l.:_(i%ﬂi).) o (r+(¢z+w )}

si

It

IPO

€
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ag(m)
ch

Cs

€2

o8 Ym
cos Yy
cot 6y

cot 6

Si

il

thi sin O
k sin ‘vl)m

(cot B cos ¢ + cot B cos ¢')

. !
iH} sin2 §' sin ¢cos&

Yok gin sin 5 sin %

FEi  sing'sin %

Zok gin B sin ¥} cos %‘-

JH t‘ cos ﬁl
k sin $9 8in %3
sin? 8 cot B cos ¢]

[cot g (cos o — cos? ﬂ')

sin @y, sin B cos ¢ + cos Oy cos

8in Oy, sin B cos ¢' — cos Oy, cos F'

cosf — cos B

sin 8 cos ¢ + sin B! cos ¢'

cot g
-1 ,x-¢' <0
i ,x—-¢'>0

(4.20)

(4.21)

(4.22)

(4.23)
(4.24)
(4.25)
(4.26)
(4.27)

(4.28)

The details are outlined in Appendix D. Notice that the arguments of the cotan-

gent functions now correspond to physical angles and will always be real valued.

The angles ¥, \b’l, Vv, aad s‘:& are the angles between either the incident or the

diffracted ray and either of the spatial integration directions, 8; or 82, used in

finding the equivalent curvents. The four new augles are defined by:

cosyYy = 80
cosyy = 4-69
1 o A
cosy; = 4§ -0
' o4
coayy = # 03

83

(4.29)
(4.30)
(4.31)

(4.32)




where:

&y = bsin +icosby (4.33)

69 = bsinfy +icosdy (4.34)

and 6 and @2 are given in Equations (4.26) end (4.27), respectively. The first
two angles, ¥ and 3, are the angles between the observation direction and the
direction that the asymptotic endpniat contribution was taken for the LPO and
fringe components, respectively. Likewise the second two angles, 1,b'1 and t{:&, are
the angles between the incident ray direction and the direction that the asymptotic
endpoint contribution was taken for the LPO and fringe components, respectively.
The LPO and PO components are easily written in this way. The UTD components
look more complicated in this form, however it may be possible to write the UTD
components in a form similar to the LPO and PO components if the endpoint

contribution is done over entirely in a different coordinate system.




CHAPTER V

RESULTS

5.1 Introdaction

The scattered fields predicted by the new corner diffraction coefficient derived
in Chapter III are compared with previous higfx frequency solutions, measurements,
and Moment Method solutions for some specific examples. The new solution is first
compared with a few backscatter examples commonly found in the literature to
show that in the principal planes it generally gives the same results as previous
solutions. Then the new corner diffraction coefficient is compared with measure-
ments for a swept frequency case which is described later. Finally the new corner
diffraction solution is compared with Method of Moments and measurements for
some new examples. Throughout this chapter the new corner diflraction solution
and the new cquivaleat current solution will both be referred to as the new or new
corner solution. Note that it was shown in Chapter 1II that both give the same

reauliz for first order scattering.
. 5.2 Brief Description of Program

A computer prograum written previously at OSU to calculate the RCS of a
convex perfectly coaducting body constructed from flat plates with straight edges

was modified to calculate the RCS using the new solution. Since the program

was written to handie objecte with straigiit edges, the equivalent current form
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of the solution, given in Equations (3.38) and (3.40), was used. The integration
along the edge was done in closed form to give the contribution from each edge.
For structures other than flat plates, it is also necessary to teke shadowing into
account. Since only concave structures are considered here this is fairly simple.
The shadowing of the incident field is accounied for in the E‘} and ﬁt‘ terms in the
equivalent currents and the unit step functions in the LPO and PO components of
the equivalent currents. The sladowing of the diffracted ray is more complicated.
The contribution from the LPO and PO components are present everywhere. They
are treated as if they are radiating in free space, just like typical Physical Optics
surface currents. The UTD components are ehadowed like diffracted fields. They

do not contribute if the observation point is inside the wedge (¢ > nw).

5.3 Examples
5.3.1 Ross

The backscatter at 9.227 Ghz from a 4” x 4" plate in the y-z plane is shown
next (see Figure 62) with the results for a pattern cut taken in the x-z plane are
shown in Figure 63. Both the new corner and Sikta's results are basically the same
near broadside, as expected. Sikta's results include double and triple diffraction,
and thus are more accurate. In Figure 64 the new solution is compared with the
equivalent currents of Ryan and Peters (the first order solution used by Sikta) and
the previous corner solution. The three first order methods give essentially the

same answer in this case.

6.3.2 Northrop Fin

The backscatter from the Northrop fin shape shown in Figure 65 is compared
to measurements and calculstions made by Sikta {26]. The E-plane pattern in

the x-y plane is shown at 17.76 GHz in Figure 66. The new solution is compared
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Figure 62: Roes 4" x 4" plate.
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Figure 63: E-plaae pattern in x-z plane of Ross plate.
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Figure 66: E-plane pattern in x-y plane at 17.76 GHz of Northrop Fin.

with measurements [30], Sikta’s results, and results obtained by Northrop [19].

Sikta'’s results include higher order terms and are closer to the measured results

than the new corner diffraction solution which includes only first order terms. The

results obtained by Northrop (19}, which are based on the exact solution of an

infinite strip, are also close to the measured results and are essentially the same

as Sil....'s results. The new solution once again agrees well with the measurements

in th : region near broadside to the plate. The new solution is compared to first

order results obtained by Sikta in Figure 67, to show that higher order terms are
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Figure 67: E-plane pattern in x-y plane at 17.76 GHz of Northrop Fin.

important in regions farther than 30° from broadside. Once again Sikta used the
Ryan and Peters equivalent currents to obtain the first order contribution to the
scatiered field. The new solution and the first order solution obtained by Sikta are

about the same as expected.

5.3.8 Sikta’s triangle

The new solution is first compared with calculations and measurements ob-

tained by Sikta [26]. The backscatter in the principal plane from the triangle shown
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Figure 68: Sikta’s Triangle.

in Figure 68 was calculated for different values of a/A and a. The fields calculated
using the new corner diffraction coeflicients are compared with the results given by
Sikta [26]. Sikta calculated the fields using Ryan and Peters equivalent currents to
find the first order terms plus higher order terms (double and triple diffraction).
The results are shown in Figures 69 to 92. Throughout these examples the two
different polarizations are alternated, with the § polarized field being followed by
the ¢ polarized field. In Figures 69 to 74, the triangle length is varied (a =2,
3, 9)) while the vertex angle, a, is held constant at 30°.
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Figure 70: The H-plane pattern (¢ = 0°) jor Sikta's triangle with a = 2 and
a=30°
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In Figures 75 to 80 the results obtained using Ryan and Peters (1! equiva-
lent edge currents (the first order solution used by Siktia) are compared with the
results obtained using the new corner diffraction coefficient. The different polar-
izations and triangle sizes are given in the same order as that used previously in
Figures 69 to 74. In Figures 81 to 86 the triangle length is held constant at a = 4A

while the vertex angle a is varied (a = 45°,60°,90°).

106




w0
® i — Corner Difiraction
-+« Sikta
--- Measuremente
3 -
—~~
~
<
)
"
=
8
| =)
W end
ot /
1 '
-
<
)

O (deqg)

Figure 71: The E-plane pattern (¢ = 0°) rfor Sikta's triangle with a = 3 and
a = 30°
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Figure 74: The H-plane pattern (¢ = 0°) for Sikta's triangle with a = 9 and

a = 30°.
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Figure 76: The H-plane pattern (¢ = 0°) §°' Sikta's triangle with ¢ = 2) and
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Figure 78: The H-plane pattern (¢ = 0°) cfor Sikta's triangle with a = 3 and
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Figure 81: The E-plane pattern (¢ = 0°) ,f‘” Sikta’s triangle with ¢ = 4 and
a = 45°.
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Figure 82: The H-plane pattern (¢ = 0°) cfor Sikta's triangle with a = 4) and
a = 45°.
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Figure 85: The E-plane pattern (¢ = 0°) c}'ox* Sikta's triangle with @ = 4 and
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Figure 86: The H-place pattern (¢ = 0°) ofor Sikte's triangle with a = 4 and
a = 830°.
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As before, the results obtained using Ryan and Peters [1] equivalent edge
currenis (the first order solution used by Sikta) are compared with the resulis
obtaired using the new corner diffraction coefficient in Figures 87 to 92. The
diferent polarizations and triangle sizes are given in the same order as that used

previcus'y in Figures 81 to 86.
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Figure 87: The E-plane pattern (¢ = 0°) c!'m' Sikta's triangle with a = 4) and
a = 45°,
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In all cases the new solution and the meesurements match well in the region
within 50° of the broadside to the plate. In addition for the case of ¢ polarization
the new solution and the measurements are close enough for engineering purposes
all the way to the plane of the plate in the region away from the tip of the triangle.
For either polarization the new corner and the measurements differ significantly
in the region of the tip of the triangle. Sikta shows that higher order terms are
important in this region. The new solution and the first order terms obtained by
Sikta using the equivalent currents of Ryan and Peters are approximately the same
for all of the examples given here. There are only minor differences between the

two different methods which become smaller as the size of the triangle is increased.

5.3.4 Cube

A few examples are illustrated here for the scattering from a cube with one
wavelength long sides. The results are compared with those obtained using the
Meihod of Moments. The cube is positioned relative to the axes in the usual way
(each edge is parallel to one of the coordinate axes). The results for co-polarized
backscatter in the principle plane are shown for the H-plane (with § = 90°) in
Figure 93 and for tixe E-plane (with ¢ = 90°) in Figure 94. The results obtained

are very close to those obtained using the Method of Moments.

5.3.5 6" Cube

In this example the new solution is compared to backscatter measurements
made on a 6” cube. All of the results are for co-polarized fields only. With
the cube oriented so that each edge is parallel to one of the axes as shown in
Figure 95, the pattern was taken in the x-y plane at 10 GHz. The results for a
vertically polarized (or 8 polarized) incident field are shown in Figure 96, while

the results for a horisontally polarized (d; polarized) incident field are shown in
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Figure 95: Cube geometry with the illuminated corners iabeled.

Figure 97. The results agree fairly well everywhere, with differences of only a few
dB throughout the patterns. The patterns are repeated for & cube tilied 45° in
the x-z plane as illustrated in Figure 98. The results for the H-piane and E-plane
patteras taken in the x-y plane are given in Figures 99 and 100, respectively. The
results do not agree as well in this case. This is probably due to a combination of
errors in the theory and in the measurements. The major error in the theory is the
lack of higher order terms. The error in the measurements is likely two fold. First
the faces of the cube were misaligned and so they did not form edges as sharp as
may be required. Secondly it seems that there was some deviation from the desired
pattern cuts as can be seen from the lack of symmetry in the measured patterns.

The final patterns are for & cube tilted 45° in the x-z plane followed by tilting
it 35.2° in the y-z plane so that the z-axis coincides with one of the long diagonals
passing through the center of the cube (as illustrated in Figure 101). The results
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Figure 98: 6" Cube tilted 45° i the x-2 plane.
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Figure 99: H-plane pattern for 6" cube tilted 45° in the x-z plane.
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Figure 100: E-plane pattern for 6" cube tilted 45° in the x-z plane.

for the H-plane and E-plane patterns taken in the x-y plane are given in Figures 102
and 103, respeciively. As with the previous patterns the higher level lobes agree
fairly well, but the lower level lobes do not agree well. The reasons for this are the

same as those stated previously.

5.3.6 Swept Frequeucy Results

In this section swept frequency measurements ana calculations are trans-
formed to the time domain as described by Dominek [31] and Leeper [32]. A
bricf description of the idea behind this is given here. While the target remains
stationary the RCS is mensured over a wide frequency range. An Inverse Fourier
Transform is then preformed on the frequenc: domain data to give the “finite
bandwidth impulse response” of the target as a function of time. In this manner
the different scattering centers on a target may be resolved due to their different
electrical lengths from the source. Obviously the closer the scattering center is

to the source the earlier its contribution will appear in the time response. The
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Figure 101: 6" Cube tilted 45° in the x.z plane, then 35.2° in the y-2 plane.
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resolution of the scattering centers in the time domain is approximately equal to
the reciprocal of the bandwidth of the measurements. Since actusl distances on
the target are related to the time delay by the speed of light, the resolution is
approximately the speed of light divided by the bandwidth of the measurement.
It should be noted that in practice the frequency data is usually passed through a
linear phase filter before the Inverse Fourier Transform is taken. The filtering pre-
vents the resulting time domain function from containing some unwanted ripples
due to Gibb’s phenomenon.

For this example a 6” cube was oriented as in Figure 95 and the RCS was
measured for § = 35.2°, ¢ = 45° every 10 MHz while the frequency was swept
from 2 GHz to 18 GHz. This data was passed through a Kaiser-Bessel bandpass
filter with parameter a@ = 2. The Inverse Fourier Transform was then performed.
The co-polarized results for a vertically polarized incident field are shown in Fig-
ure 104, and the co-polarized results for a horizontally polarized incideat field are
given in Figure 105. The first pulse is due to the scattering from the corner closest
to the source. In both cases the calculations match very closely with the measure-
ments. The calculations match the second pulse well for the horizontally polarized
case, while the measurements and calculations are significantly different for the
vertically polarized case. A first order solution can only be gxpected to match the
first two pulses though, since the measured time response includes higher order
terms which have almost the same delays as contributions from the other corners
making it difficult to separate out the contributions frora individual corners. The
contributions from each of the illuminated corners are still difficult to identify due
to the limited bandwidth of the calculations. Since the bandwidth of the measure-
ments was 6 GHz the resolution should be approximately 0.17 ns. The two way

time delays for the illuminated corners are listed in Table 1. Obviously the reiurns

.
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Table 1: Delay times from different corners of the 6” cube.

Corner No. | Two Way Delay Time

(see Figure 95 (nsec.)
1 0.00
(ref.)

2 0.41
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Figure 104: Impulse response for 6” cube a.ond a § polarized source at § = 35.2°,
¢ =45°,
from many ¢f the corners have essentially the same time delays so there is not a

separate pulse corresponding to each corner.

5.3.7 Bistatic Scattering from a 2) plate illuminated by a fixed source

The scattering from a square plate two wavelengths on a side is examined in
detail next. The complete scattering matrix (all four values of ¢) is found for the
plate in the x-y plane with a fixed source at 6* = 45° and ¢* = 0° (see Figure 106).
Circular pattern cuts from ¢ = 0° to ¢ = 90° are taken every 30°. The results for
the co-polarized fields and the ¢ = 0° pattern cut are compared with the previous
equivalent currents and Method of Moment calculations in Figures 107 and 108
(the results for ¢ = 60° are given in Section 2.7 for the previous corner diffraction
coefficients). The cross-polarized fields are gero for both a @ polarized incident

field and s ¢ polarized incident field. The previous equivalent currents and the
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Figure 105: Impulse response for 6" q;:\_l})zsaond a ¢ polarized source at 8 = 35.2°,

new corner diffraction coefficient agree so closely that they essentially lie on top of
each other in this pattern. This is not unexpected since, in this pattern cut, the
receiver is on the Keller cone for the {front and back edges, which therefore give the
major contribution to the scattered field. The new solution reduces to previous
solutions on the Keller cone (see Section 4.6), which do not radiate any cross
polarized field for incidence normal to the edge. The results for the ¢ = 30° pattern
cut are compared with the previous equivalent currents and Method of Moment
calculations for the co-polarized fields in Figures 109 and 110. Similarly the results
for the cross-polarized fields are given in Figures 111 and 112. The results for
the ¢ = 80° patiern cut are compared with the previous equivalent currents and
Method of Momsnt calculations for co-polarized fields in Figures 113 and 114.
Similarly the results for the cross-polarized fields are given in Figure 115 and
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Incident Ray

Scattered Direction

Figure 106: 2) square plate in the x-y plane with a fixed source at 6* = 45° and

¢ =0.
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Figure 107: Co-polarized RCS in the ¢ = 0° plane of a 2A square plate with a 6§
polarized fixed source at 6* = 45°, ¢* =
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Figurc 108: Co-polarized RCS in the ¢ = 0° plane of a 2) equa.re plate with a ¢
polarized fixed source at §* = 45°, ¢ =
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Figure 109: Co-polarized RCS in the ¢ = 30° plane of a 2 square plate with a 6
polarized fixed source at §* = 45°, ¢* = (°,
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Figure 110: Co-polarized RCS in the ¢ = 30° plane of a 2A square plate with a ¢*
polarized fixed source at §* = 45°, ¢* = (°,
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Figure 111: Cross-polarized RCS in the ¢ = 30° plane of a 2) square plate with a
6* polarized fixed source at 8* = 45°, ¢* = 0°.
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Figure 112: Cross-polarised RCS in the ¢ = 30° plane of & 2) square plate with a
¢* polarized fixed source at 8% = 45°, ¢ = 0°.
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Figure 113: Co-polarized RCS in the ¢ = 60° plane of a 2] square plate with a g
polarized fixed source at §* = 45°, ¢* = 0°.
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Figure 114: Co-polarized RCS in the ¢ = 60° plane of a 2) square plate with a &
polarized fixed source at 6* = 45°, ¢* = 0°.
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Figure 115: Cross-golarized RCS in the ¢ = 60° plane of a 2) square plate with a
§* polarised fixed source at 6* = 45°, ¢* = 0°.
Figure 116. The resulis for the ¢ = 90° pattern cut are compared with the previous
equivalent currents ax;d Method of Moment calculations for co-polarized fields in
Figures 117 and 118. Similarly the results for the cross-polarized fields are given in
Figures 119 and 120. Buyukdura (22] also gives results using the new solution for
the case of a 6 polarired incident field (the slight differences between his results and
those given here are suspected to be due to & sign error in his program). Overall
the new solution agrees well with the Method of Moment calculations and does
not exhibit the false shadow boundaries mentioned in Sections 2.6 and 2.7. The
previous equivalent current solutions exhibit spikes at the false shadow boundaries
which occur near § = 130° and ¢ = 310° for the ¢ = 30° pattern cut and near
0 = 240° and 8 = 300° for the ¢ = 60° pattern cut. In the region from 6 =~ 60°
to 120° (i.e. near the plane of the plate) for both the ¢ = 30° and ¢ = 60° the
new solution and the Method of Moments solution differ by more than 20 dB. It

is suspected that most of these differences are due to the effects of higher order
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Figure 116: bfoss-polmzed RCS in the ¢ = 60° plane of a 2A square plaie with a
¢' polarized fixed source at 8' = 45°, ¢* = 0°.
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Figure 117: Co-polarized RCS in the ¢ = 80° plane of a 2) square plate with a 6
polarized fixed scurce at 6* = 45°, ¢ =0°.
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Figure 118: Co-polarized RCS in the ¢ = 90° plane of a 2) square plate with a ¢'
polarized fixed source at 8* = 45°, ¢* = 0°.
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Figure 119: Cross-polusised B7S in the ¢ = 80° plane of a 21 square plate witha
' polarizca fixed source at 8* = 45°, ¢* = 0°.
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Figure 120: Cross-polarized RCS in the ¢ = 90° plane of a 2 square plate with a
¢* polarized fixed source at §* = 45°, ¢* = 0°.

terms (double and triple diffraction, edge waves) which are not included in the new
solution. This may also be the case for gy in the ¢ = 90° pattern, although this
also indicates that the higher order terms for the new solution and the previous
solution must differ for points off of the Xeller cone. The results for a pattern cut

near the plane of the plate (6 = 39°) have been given in Section 4.2.

5.3.8 Bistatic scattering from a 2) plate illuminated by a fixed source
in a second position

In the previous example the scatiered field depended on only one or two
currents along each edge instead of all thrse. This may be easily secn from the
geometry. For a 6 polarized incident field the incident electric fieid tangent to the
front and back edges is zero and the incident magnectic field tengent to the two
sides is zero. Therefore only I, (D§) and M (Dj) along the front and back edges
and I, (D{) along the right and left edges contribute to the scattered field. If the

incident field is ¢ polarized instead, the currents contributing from each edge are
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Inoident Ray

X

Figure 121: 2 square plate in the x-y plane with a fixed source located at
0 = 45°, ¢* = 45°.
the opposite of those for the 6 pelarized incident field.

In ozder that all three currents along each edge will contribute to the scattered
field the source is moved to & new location. Retaining the square plate from the
above example and moving the source to §' = 45° and ¢* = 45° (see Figure 121)
circular pattern cuts were once again taken every 30° from ¢ = 45° to ¢ = 135°.
The results for the co-polarized fields and the ¢ = 45° patiern cut are compared
with Method of Moment calculations in Figures 122 and 123. The cross-polarized
fields are zero for both a § polarized incident field and a ¢ polarized incident field.

The results for the ¢ = 756° pattern cut are compared with Method of Moment
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Figure 122: Co-polarized RCS in the ¢ = 45° plane of a 2) square plate with a g
polarized fixed source at §* = 45°, ¢* = 45°.
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Figure 123: Co-polarized RCS in the ¢ = 45° plane of a 2 square plate with a ¢*
polarised fixed source at §* = 45°, ¢* = 45°.
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Figure 124: Co-polarized RCS in the ¢ = 75° plane of a 2 square plate with a 'K
polarized fixed source at 8 = 45°, ¢* = 45°.
calculations for the co-polarized fields in Figures 124 and 125. Similarly the results
for the cross-polarized fields are given in Figures 126 and 127. The results for the
@ = 105° pattern cut are compared with Method of Moment calculations for the
co-polarized fields in Figures 128 and 129. Similarly the results for the cross.
polarized fields are given in Figures 130 and 131. The results for the ¢ = 13§°
pattern cut are compared with Method of Moment calculations for co-polarized
fields in Figures 132 and 133. Similarly the results for the cross-polarized fields
are given in Figures 134 and 135. The conclusions which may be drawn from
this example are generally the same as those of the previous example. The new
solution and the Method of Moments agree well overall. The region of space where
the results are not in good agsement is close to the plane of the plate as in the
previous example. Once again, it is speculated that these differences are due to

higher order terms (double or triple diffraction).

154




- Corner Diffraction
ﬂ -+ Moment Method

-

A

© (deg.)
Figure 125: Co-polarized RCS in the ¢ = 75° plane of a 2) square plate with a ¢
polarized fixed source at §* = 45°, ¢' = 45°,
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Figure 126: Cross-polarized RCS in the ¢ = 75° plane of a 2 square plate with a

-

6* polarized fixed source at 8" = 45°, ¢* = 45°.
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Figure 127: Cross-polarized RCS in the ¢ = 75° plane of a 2) square plate with &
@' polarized fixed source at 8* = 45°, ¢* = 45°.
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Figure 128: Co-polarized RCS in the ¢ = 105° plane of a 2X square plate with a
6* polarized fixed source at 8* = 45°, ¢* = 45°.
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Figure 129: Co-polarized RCS in the ¢ = 105° plane of a 2] square plate with a
¢* polarized fixed source at 8* = 45°, ¢* = 45°.
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Figure 130: Cross-polarized RCS in the ¢ = 105° plane of a 2 square plate with
a 8 polarized fixed source at 8* = 45°, ¢' = 45°.
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Figure 131: Cross-polarized RCS in the ¢ = 105° plane of a 2] square plate with
a ¢* polarized fixed source at §* = 45°, ¢ = 45°.
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Figure 132: Co-polarized RCS in the ¢ = 135° plane of a 2) square plate with a
§* polarized fixed source at 6* = 45°, ¢' = 45°.
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Figure 133: Co-polarized RCS in the ¢ = 135° plane of a 2) square plate with a
@' polarized fixed source at §* = 45°, ¢* = 45°,
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Figure 134: Cross-polarized RCS in the ¢ = 135° plane of a 2) square plste with
a 0* polarized fixed eource at §* = 45°, ¢* = 45°,

159




i —  Corner Diffraction |
" <« Moment Method
= :
p——
<
~ 87
o0
©
S’
$°-
=)
@ 11
1
=
N‘ L] l AJ ] ¥
0 60 120

Figure 135: Cross-polarized RCS in the ¢ = 135° plane of a 2 square plate with
a ¢* polarized fixed source at §* = 45°, ¢' = 45°,

5.4 Conclusion

Several examples have been given in this chapter comparing the new corner
diffraction solution with previous high frequency solutions, Method of Moments
solutions, and measurements. The first set of examples (Sections 5.3.1, 5.3.2, and
5.3.3) illustrate that the new solution gives essentially the same resulis as the
previous equivalent currents for patterns in the principle plane of flat plates. The
next set of examples for bistatic scattering (Sections 5.3.7 and 5.3.8) illustrate that
the new solution agrees very well with Method of Moments resulis for a wide range
of bistatic angles. Further most of the differences between the two are probably

duc to higher order terms.
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CHAPTER VI

CONCLUSION

The new equivalent currents are valid for perfectly conducting structures with
straight edges and flat faces. The contribution to the equivalent edge currents due
to each face of the edge is given in Equations (3.38) and (3.40) where the an-
gles are the edge fixed angles described in Figure 1 of Section 1.5.3. The total
equivalent edge currents for the special case of a flat plate are given in Equa-
tions (3.47) and (3.49). The equivalent currents may be used to find the scattered
field in the far zone when the object is illuminated by a plane wave.

A new corner diffraction coefficient for finite closed structures made up of
perfectly conducting flat plates has been derived from the new equivalent cur-
rents. It has been demonsirated in Chapter V to agre: reasonably well with both
method of moments calculations and measurements, especially in regions of space
where higher order diffracted fields are negligible. The contribution to the corner
diffracted field from one face and one edge is given in Equation (A.2). For the spe-
cial case of a flat plate the contribution due to each edge is given by Equation (A.3).
The important properties of the solution are described in Chapter IV. The new
corner diffraction coefficient may be used to calculate the far zone scattered field,
to first order, from an object illuminated by a plane wave.

The new corner diffraction coefficients and equivalent currents have some dis-

advantages and some advantages over previous high {requency solutions. The main
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disadvantages of the new solutions are that they are not valid in the near zone and
some of the terms must be shadowed in a PO way. Since parts of the new solu-
tions must be shadowed in a PO way it is unclear whether they can be combined
with other UTD solutions to find the RCS of a general three-dimensional object.
On the other hand it has been shown that the new corner diffraction coefficients
and the new equivalent currents give the same results for first order diffraction.
The new solution approaches a definite limit normal to the plate, reducing to the
well known PO result in this direction. The new solution also agrees closely with

Method of Moments solutions for bistatic scattering from a flat plate.
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APPENDIX A

NEW CORNER DIFFRACTION COEFFICIENTS

The new corner diffraction coefficients are given in a form similar to previous

expressions for diffraction coefficients:

E¢ D¢ D& Ei ~jks
Pr= T TR (A1)
¢ 1
E§ o D || E,
J 1 LPQ , JUTD _ ;PO
Di)hlz = :i:41fk CO’Qﬁ — COSﬁ' {ds,k,Z + dl.h,z - da..‘;,?] (A‘z)

where the plus or minus sign is chosen depending on which endpoint contribution is
being calculated. Section 3.5 discusses choosing the correct sign. The expressione

for df'j:g, dﬁ,{g , and d_‘: ,?'2 are given by(O-face contribution only)
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sinf
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where the + sign is associated with dfFC, afP0, dJTD, 7D, 4PO, and df°0
while ihe — sign is associated with the d2PO, dUTD and 4P terms. For the
special case of a flat plate (n = 2) the contribution from both faces may be found
using
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where v, a, and the other variables have been defined previously.
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APPENDIX B

EQUIVALENT CURRENTS FOR EDGE ON INCIDENCE

The steps required to show that the new equivalent currents are finite for edge
on incidence (#' — 0 or ' — ) are cutlined in this appendix. Michaeli [14] gives
a very brief outline of the procedure required to find the fringe equivalent currents
as cdge on incidence is approached in the limit.

Showing that the LPO and PO components of the equivalent currents are finite
for edge on incidence is fairly trivial, and is cnly briefly described here. Using the
form of the LPO components given in Equations (3.23) and (3.24) and the form of

the PO components given in Equations (3.29) and (3.30), along with the relations

E} « Elsing' (B.1)

H « Hising (B.2)

where E: and H_ are the magnitude of the incident electric and magnetic fields
respectively, it may be easily shown that both equivalent currents approach finite
limits as 3’ — 0 or ' — . It has been assumed that the face under consideration
is being illuminated by the incident field, otherwise the LPO and PO components
of the equivalent currents aie identically zero.

Finding the UTD components of the equivalent currents as edge on incidence
is approached is more complicated. First an appoximation to the parameter a must

ke found for sin 8’ — 0. Using Equation (3.45) and the assumption sin ' < cos 8
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results in

a =+ j2ln (sin §) (B.3)
which leads to
sna & 4y (B.4)
2 8in“ g
sin (W ; a) ~ J2- sin~ %ﬁ' (B.5)
cos (W ; a) ~ % sin”~ % g (B.6)

Using Equations (B.1), (B.2), (B.4), (B.5), and (B.6) in Equations (3.27) and
(3.28) and then letting 3' — 0 or letting 8’ ~» = shows that MUTD and I¥TD are
finite for edge on incidence. The contribution from both faces must be included to
show that the other component of the electric equivaient current (IS7P) is finite
for edge on incidence. The contribution to the equivalent currents from the N-face
is found by replacing { with —¢, 8’ with x — g/, ¢' with nw — ¢, § with = — 3, and
¢ with nt — ¢ in the expressions for the contribution tc the equivalent currents
from the O-face. For IUTD the resulting expression for the contribution from both

faces is given by

o 2%
™ k sin §'
{ 1/n(cos ag cot B — cot B cos @) sin [(7 ~ o) /n]Hi
cos(¢'/n) ~ cos[(7 — ap) /n] sina, t
1/n(~ cosay cot f' — cot B cos (nr — ¢))sin (7 — an) /n] (-—H‘)}
cos[(nx — ¢') /n] — cos[(7 ~ ap) /n] gin ay, ¢

(B.7)

where all of the angles are measured with respect to the edge fixed coordinate
system associated with the O-face. For sind' — 0 it is easily shown that an = ao
and the expressions for both ay, and a, are the same as the expression for a given

in Equation (B.3). Therefore combining the above with Equations (B.2), (B.4),
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(B.5), and (B.6) in Equation (B.7) one obtains an expression for ISTP which is
valid for regions of space where sin 8 is small. After placing the entire expression
over a comraon denominator, the limit taken as edge on incidence is approached
is finite.

All of the equivalent currents are finite in the limit as edge on incidence is ap-
proached (except for tae forward scatter direction). In practice this means that as
long as the source is kept reasonably far away from edge on incidence the computer
should be able to take the limit numerically. The distance from edge on incidence
that must be maintained depends on the precision of the computer and which form
of the equivalent currents are used. In this regard considerable errors may accur in
finding IUTD if each face is considered separately, since the contribution to I51 0

from each face becomes infinte as edge on incidence is approached (although the

sum of the contributions from the two faces remains finite).
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APPENDIX C

RCS FOR NORMAL INCIDENCE ON A RECTANGULAR FLAT
PLATE

The RCS of a rectangular flat plate shown in Figure 136 is found using the new
equivalent currents. The field radiated by the equivalent currents on an arbitrarily
oriented finite straight edge is found first to simplify later calculations. The finite
straight edge is shown in Figure 137 along with the edge fixed coordinates required
to define the equivalent currents. The currents are substituted into the far zone

radiation integral

3 : _jkR
B = :Lk-{zoéxéx/g [éI(z')e ]dz'

4n R

~jkR
+ oEx }g[sM"R ]dz'} (C1)

Doing the integration in closed form (only the phase of E} and H} are functions
of 2') results in
1 sin [kg (cosﬂ ~ cosﬁ')]
" ' ksin Gsin B’ (cos § — cos ')
{ﬁ (GieEIo +GimZoH t'o) - $GmZoH z'o} (C.2)

E’a

X

where the relations between the equivalent currents and the functions Gy Gim,
and Gy are given in Equation (3.53) and Equation (3.54), while E}; and Hti(l are
the complex components of the incident electric and magnetic fie.ds tangent to the

edge with the phase reference taken to be at the midpoint of the edge.
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Figure 136: Flat plate for RCS calculation with normal incidence.
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z,t

N

Figure 137: Equivalent currents on a finite straight edge.

Using the above results carefully will allow the RCS of the plate to be found for

normal incidence. The edge fixed coordinates for each edge of the rectangular plate

are shown in Figure 138 along with their relationship to the pattera coordinates.

The relationships between the pattern coordinates and the edge fixed coordinates

that will be used later are

cos 31
sin 3] cos ¢
sin 31 sin ¢y

cos 3y
sin G99 cos ¢2

sin B7 sin ¢9

sin fp sin ¢p

it

= —sinfpcosdp
= cosfp

= —sinfpcosdp
= —sin bp sin ¢p

= cosfp

The expression for the total scattered field may be obtained from a superposition
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Figure 138: Relationship between the edge fixed coordinates and the pattern
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coordinates.
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of the scatiered field due to each edge. The phase reference is placed at the origin
of the pattern coordinate system. Using the expression from Equation (C.2) for
the scattered field from each edge (in the case of backscatter, 8’ = x — ) results
in

— 1 g7 %8 sin (kw cos
E‘ = - 2n:1,3 ,( 3 ﬂn)
T s 2k sin® By, cos By,

X {Bn (G,-e(ﬂm ¢n)Etin0 + Gim{Bn, d’n)ZOHtinO)

- &nGm(ﬁm ¢n)Z0Htin0} eiljkﬁ sin 8? cos $p
1 e~ ks sin (k£ cos On)
x s n=24 2% sin2 ﬁn cos ﬁn

% {Bn (Gie(Brs #n) Eing + Girm(Bn, #n) Z0Hing)
~ $nGrm(Bn, bn)ZoHing } eIt E sinbpcondy (C3)

where

i = (-phe-d
i = (_1)&(1\—2)

where the exponential factors that have been added shift the phase references from
the center of each edge to the center of the plate and E{no (Htint)) is the component
of the incident electric (magnetic) field tangent to edge n at the center of the edge.

Simply plugging 0p = 0 (Bn, ¢n = 7/2,n = 1,2,3,4) in Equation (C.3) will not
work since some of the terms become infinite here. However if the limit is taken as
0p approaches zero, a finite result may be obtained. The zlgebra required in taking
the limit is fairly complicated, so to simplify the calculations the contribution from
each component of the current (LPO, UTD, and PO) is calculaied separately, and

then the contributions are sumimed to give the total scattered field.
E? = ELFO + E‘UTD _ E‘PO (C.4)
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The contribution from the LPO terms is found first. Letting

B = éE:,U + i]E;.,o H = :EH:O + QH;O

be the incident field at the origin (the center of the plate). Using

LPO _ 1 sin? (3 sin ¢ cos ¢
Gw (:5’ ¢’) - 2 (Binzﬂcosz¢ + 0082 '3)
G{lnfo(ﬁv ¢) =0

GEPO(8,4) = -GLFO(g,4)

along with

E}y
Hjy
E}s
Hiy
Hiy
Eiy
Hig

Bs

Bs

By

- Eyoejbf sin 6p cos ¢p
_ Hyoejkgains,cous,

~Ey ¢—ik# sin 6pcos ép

I

_ _Hwe-jbf 3in 6p cou $p

_H it sindpcosdy

_ Eye-ik¥sinbpcondy

= Hyge Jh¥sinbocondp

= -f1 Ba=-B

= x-f ¢3=7-¢1; (051%%)
= x-f ba=7-dzi(2~3)

(skipping the detuils) results in

Ll E‘j

sLpo _ _ Ik
E B 21r(w£) s

(C.6)
(C.7)
(C.8)

(C.9)
(C.10)
(C.11)
(C.12)
(C.13)
(C.14)
(C.15)

(C.16)

As should be expected, the same result would be obtained using the PO currents

in the surface integral.
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Using the same procedure for the UTD components of the currents, which are

written in the same form as in Section 4.7,

1 \/Z-smﬂsxng sin ﬂ(l — cos §) + 2 cos g

yTD _
Gie "(B¢) = 3 (Gin? fcos d — os ) (C.17)
UTD _ ¢ 2
Gim " (B,¢) = —sinfcosfcos ‘/smz A1 —cosg) 1 2000’ (C.18)

UTD _ 1 __ sin’foos
Gm “(B,¢) = 2 (sin® g cos ¢ — cos? g)

2
X ‘/Sinz B(1 — cos ) + 2cos? 8’ (C.19)

Plugging Equations (C.9) through (C.15) and Equations (C.17) through (C.18) in

Equation (C.3) and taking the limit as 6p — 0 results in
—Jks

BUTD _ (wz)-——-- B4 o-(wian? gy + Leot?4p)— B (C:20)
Finally the contribution from the PO components of the currents is found.
Using the form of the currents given in Section 4.7

sin? G sin ¢

PO =21 ,
G (ﬂ9¢) - 2 (ainﬁﬂcosdb—coozﬁ) (0.21)
GEo(B,¢) = 0 (C.22)
GEo(B.¢) = -GEO(B,¢) (C.23)

Plugging Equations (C.9) through (C.15) and Equations (C.21) through (C.23)

into Equation (C.3) results in
- jk e—Jke — ks
EPO = _ (wt) E'+ —-(wtm ¢p + Leot? ¢,,)-—-—_ E (c24)

which is the same as I;S'.UTD .

~ Combining the results of Equations (C.16), {C.20), and (C.24) gives the total
scattered field

: L
go_ _ 3k, e
E'= - Z(w)——E (C.25)
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or converting it to RCS

we)?
Tco-pol = 4”£‘X§)_'

A2
Oco—-pol = 4"33

Oz-pol = 0

Notice that the fringe components (UTD-PO) cancel for backscatier at normal
incidence, and the field is determined by the LPQ component of the currents
(which predict the same fields as the PO surface integral).
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APPENDIX D

AN EQUIVALENT EXPRESSION FOR THE EQUIVALENT
CURRENTS

The expressions for the equivalent currents in Equations (4.16) and (4.18) are
derived here from previous expressions in Buyukdura [22] and Michaeli [13]. Since
the expressiona are quite complicated each of the three components (LPO, UTD,
and PO) will be derived separately.

Starting with the LPO components of the currents from Buyukdura [22].

rd !
PO o _ Zj‘k E'::;,c + 2 - Hi(cot Beos + cot flcos $)C (D.1)
22y, ;80 ¢
MI'PO = -;Igfﬁmo (D.?)
where
sin d cos ¢ + sin ' cos @'

C= ‘
[(COGB — co8(3')2 + (sin § cos ¢ + ain A cos ¢')2] (D3)

Further separating the equivalent electric current into I,LP 0 and ILPO components

results in

U
[LPo - 2}:1 E‘:: g’ — 1. . 04
! [-TL;B&%@%):—W + (sinfcoed + sin g’ cos¢')]

combining with
cosyy = sinf)sinfcosd + cosl) cos S (D.5)
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cosy] = sinf;sinf' cos ¢’ + cos by cos g’ (D.6)

cosff — cos '
oty = .
ot 61 sin B cos ¢ + sin 8’ cos @’ (D.7)

results in

2Yy ;sin¢'sing,; 1
IFP0 = 0] D.
€ ikt sinf  cosyy + cos ¥ (D8)

Using & trigone=:iric identity from Section 3.4 results in

ILPO _ 1Y isin:ﬁ'sinﬁl
¢ 7 2k sinflsing]

(b — o il
{[mt (’f (1.1’; ¢'1)) — cot (’H“(*l’i 4’1))]
_ ! | !
_ [cot (j_"_ (¥1 + ¢1)\’ ot (ﬂ' + (¥ 4 ¢1))]}
4 ) 4
The expression here is the same as that given in Section 4.7 except for the step
function which is implied in this expression since Buyukdura assumes O-face in-

cidence. Using a similar procedure the expressions in Section 4.7 for I,I,',P O and

PO may be derived.

Next the expression for IUTP is developed. Stariing with the expression for
IUTD derived by Buyukdura [22).
JUTD 2] i sinﬁ'cos%'-
m " 'k tein@'(sinBcos$ + sin 3 cos @) + (cos B cos 3"} cos §'
x [cotﬂ' (sinﬁ cos § + (cos & — cos ') cotB') ~ sing' cotﬂcosd?]
< 2
sin §'(sin B cos ¢ + sin B’ cos ¢') — (cos B ~ cos B') coz '
(although the terms are not separated in this wey by Buyukdura [22], it can be

(D.9)

shown that the part of I given here corresponds to I,[,],TD )

Using
cosJg = cosf' (D.10)
cosypy = sinfosinBcosd + cosbycosf (D.11)
cosph = sinbpsinf cosd' + cosdycon (D.12)
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results in

uTD _ 2 o smﬂ'cos%— 2
Im™™ = JkH cos Yy + cos¢2 1 — cos g (D-13)
where
cot ﬂ' i sinfB cosBcos
g [cost/)g — o8 ﬂ] oo g (D.14)
Using the trigonometric identity as before results in
[UTD _ Ht sin 8/ cos&
m Bin %2 sin 1[:2
o —¥5)\ hg —
X {[Lot (‘rr (‘b ) 227§ — cot /——-—-—ﬂ + (2 _¢2))]
) T )
- Labho L '
) ()] o
which is the same as the expression given in Section 4.7. The results for IVTD and

MVYTD gre obtained in a similer manner.
Finally the expression for MPQ of Section 4.7 is found. Starting with the

expression given by Michaeli {14

po _ 22y . sin ¢

M = jk HiU(r - ¢ )mnﬂsmﬁ' (cos ¢ + cosa) (D16)
3 v, 4 — ’

s = sinfcosd  {cos3 — cos@')cos f' (D.17)

sin @' Ain? g

Substituting the expression for cos & into the expression for MFO results in

MPC = %Z,;QH:U(x - ¢')-————-—-"“§:};‘ d
sin® §' cos ¢ + sin §' sinﬁcclmgt + (cos i — cos ) cos B (D-18)
Using 3, ¥4, and 63 defined provicusly.
MPO = 220 giy (o _ gy Tindsin g 1 (D19)

. N '
jk sinf  cosyy + cosyy
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Using the trigonometric identity from Section 3.4 as before results in

NP0 < vl -5
: {[wt (=) i)
+ [cot (-"—_—(—'J’-z—t-‘%l) ~ cot (ﬁ—(‘%w)]} (D.20)

which is the same as the expression given in Section 4.7. The apparent difference
due to the replacement of the §* function by the step function U(r — ¢') is only a
technicality since the expression given here gives the contribution fromn bosh faces,
but is valid only for O-{ace irzidence whiie the exp.cssion in Section 4.7 givas the
contribution from both faces for either O-face or N-face incidence. The other two
s IPO aod [P0

term may be found similarly.
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